12,801 research outputs found

    Children's adherence to Haart

    Get PDF
    No Abstract

    Antiretroviral therapy for children in the public health case sector

    Get PDF
    No Abstract

    Transformation seismology: composite soil lenses for steering surface elastic Rayleigh waves.

    Get PDF
    Metamaterials are artificially structured media that exibit properties beyond those usually encountered in nature. Typically they are developed for electromagnetic waves at millimetric down to nanometric scales, or for acoustics, at centimeter scales. By applying ideas from transformation optics we can steer Rayleigh-surface waves that are solutions of the vector Navier equations of elastodynamics. As a paradigm of the conformal geophysics that we are creating, we design a square arrangement of Luneburg lenses to reroute Rayleigh waves around a building with the dual aim of protection and minimizing the effect on the wavefront (cloaking). To show that this is practically realisable we deliberately choose to use material parameters readily available and this metalens consists of a composite soil structured with buried pillars made of softer material. The regular lattice of inclusions is homogenized to give an effective material with a radially varying velocity profile and hence varying the refractive index of the lens. We develop the theory and then use full 3D numerical simulations to conclusively demonstrate, at frequencies of seismological relevance 3–10 Hz, and for low-speed sedimentary soil (v(s): 300–500 m/s), that the vibration of a structure is reduced by up to 6 dB at its resonance frequency

    Bosonization and density-matrix renormalization group studies of Fulde-Ferrell-Larkin-Ovchinnikov phase and irrational magnetization plateaus in coupled chains

    Full text link
    We review the properties of two coupled fermionic chains, or ladders, under a magnetic field parallel to the lattice plane. Results are computed by complementary analytical (bosonization) and numerical (density-matrix renormalization group) methods which allows a systematic comparison. Limiting cases such as coupled bands and coupled chains regimes are discussed. We particularly focus on the evolution of the superconducting correlations under increasing field and on the presence of irrational magnetization plateaus. We found the existence of large doping-dependent magnetization plateaus in the weakly-interacting and strong-coupling limits and in the non-trivial case of isotropic couplings. We report on the existence of extended Fulde-Ferrell-Larkin-Ovchinnikov phases within the isotropic t-J and Hubbard models, deduced from the evolution of different observables under magnetic field. Emphasis is put on the variety of superconducting order parameters present at high magnetic field. We have also computed the evolution of the Luttinger exponent corresponding to the ungaped spin mode appearing at finite magnetization. In the coupled chain regime, the possibility of having polarized triplet pairing under high field is predicted by bosonization.Comment: 18 pages, 19 figure

    Avec ou sans trait d'union : note sur le terme "Indo-chine"

    Get PDF
    Dans cet article, on tente une analyse des termes 'Indo-Chine' et 'Indochine' au regard des autres expressions usuelles actuelles et au contexte historique, en montrant en quoi le trait d'union différenciant les deux termes est de nature sémantique. En conclusion de ce travail, il est suggéré de réutiliser le terme 'Indo-Chine' pour désigner l'Asie du Sud-Est continentale (acception géographique), enrichissant ainsi un vocabulaire assez pauvre, et de réserver le terme 'Indochine' pour désigner les anciennes colonies françaises dabs cette région (acception historique et politique). (Résumé d'auteur

    Haldane charge conjecture in one-dimensional multicomponent fermionic cold atoms

    Full text link
    A Haldane conjecture is revealed for spin-singlet charge modes in 2N-component fermionic cold atoms loaded into a one-dimensional optical lattice. By means of a low-energy approach and DMRG calculations, we show the emergence of gapless and gapped phases depending on the parity of NN for attractive interactions at half-filling. The analogue of the Haldane phase of the spin-1 Heisenberg chain is stabilized for N=2 with non-local string charge correlation, and pseudo-spin 1/2 edge states. At the heart of this even-odd behavior is the existence of a spin-singlet pseudo-spin N/2N/2 operator which governs the low-energy properties of the model for attractive interactions and gives rise to the Haldane physics.Comment: 4 pages, 4 figure

    Trionic and quartetting phases in one-dimensional multicomponent ultracold fermions

    Full text link
    We investigate the possible formation of a molecular condensate, which might be, for instance, the analogue of the alpha condensate of nuclear physics, in the context of multicomponent cold atoms fermionic systems. A simple paradigmatic model of N-component fermions with contact interactions loaded into a one-dimensional optical lattice is studied by means of low-energy and numerical approaches. For attractive interaction, a quasi-long-range molecular superfluid phase, formed from bound-states made of N fermions, emerges at low density. We show that trionic and quartetting phases, respectively for N=3,4, extend in a large domain of the phase diagram and are robust against small symmetry-breaking perturbations.Comment: Contribution to the SOTANCP 2008 worksho

    Competing orders in one-dimensional half-filled multicomponent fermionic cold atoms: The Haldane-charge conjecture

    Full text link
    We investigate the nature of the Mott-insulating phases of half-filled 2N-component fermionic cold atoms loaded into a one-dimensional optical lattice. By means of conformal field theory techniques and large-scale DMRG calculations, we show that the phase diagram strongly depends on the parity of NN. First, we single out charged, spin-singlet, degrees of freedom, that carry a pseudo-spin S=N/2{\cal S}=N/2 allowing to formulate a Haldane conjecture: for attractive interactions, we establish the emergence of Haldane insulating phases when NN is even, whereas a metallic behavior is found when NN is odd. We point out that the N=1,2N=1,2 cases do \emph{not} have the generic properties of each family. The metallic phase for NN odd and larger than 1 has a quasi-long range singlet pairing ordering with an interesting edge-state structure. Moreover, the properties of the Haldane insulating phases with even NN further depend on the parity of N/2. In this respect, within the low-energy approach, we argue that the Haldane phases with N/2 even are not topologically protected but equivalent to a topologically trivial insulating phase and thus confirm the recent conjecture put forward by Pollmann {\it et al.} [Pollmann {\it et al.}, arXiv:0909.4059 (2009)].Comment: 25 pages, 20 figure
    • …
    corecore