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Transformation seismology: 
composite soil lenses for steering 
surface elastic Rayleigh waves
Andrea Colombi1, Sebastien Guenneau2, Philippe Roux3 & Richard V. Craster1

Metamaterials are artificially structured media that exibit properties beyond those usually encountered 
in nature. Typically they are developed for electromagnetic waves at millimetric down to nanometric 
scales, or for acoustics, at centimeter scales. By applying ideas from transformation optics we can 
steer Rayleigh-surface waves that are solutions of the vector Navier equations of elastodynamics. 
As a paradigm of the conformal geophysics that we are creating, we design a square arrangement 
of Luneburg lenses to reroute Rayleigh waves around a building with the dual aim of protection 
and minimizing the effect on the wavefront (cloaking). To show that this is practically realisable we 
deliberately choose to use material parameters readily available and this metalens consists of a 
composite soil structured with buried pillars made of softer material. The regular lattice of inclusions 
is homogenized to give an effective material with a radially varying velocity profile and hence varying 
the refractive index of the lens. We develop the theory and then use full 3D numerical simulations 
to conclusively demonstrate, at frequencies of seismological relevance 3–10 Hz, and for low-speed 
sedimentary soil (vs: 300–500 m/s), that the vibration of a structure is reduced by up to 6 dB at its 
resonance frequency.

Mathematicians and physicists have long studied the physics of waves at structured interfaces: Back in 1898, Lamb 
wrote a seminal paper on reflection and transmission through metallic gratings1 that then inspired numerous 
studies on the control of surface electromagnetic waves. The concept that periodic surface variations could cre-
ate and guide surface waves has emerged in a variety of guises: Rayleigh-Bloch waves for diffraction gratings2,3, 
Yagi-Uda antenna theory4,5 and even edge waves localised to coastlines6 for analogous water wave systems. Most 
notably in the last decade, the discovery of spoof plasmon polaritons (SPPs)7 has motivated research not only 
in plasmonics8–10 but also in the neighbouring, younger, field of platonics11, devoted to the control of flexural 
(Lamb) waves in structured thin elastic plates. The extension of ideas such as cloaking12–14 to plasmonics15–20 is 
highly motivational as it suggests that one can take the concepts of wave physics from bulk media, as reviewed 
in21, and apply them to surfaces. In platonics, implementations of ideas from transformation optics22–24 show how, 
all be it for the limiting cases of thin elastic plates, similar concepts can take place in another arena of physics, in 
this case mechanics and elasticity. Unfortunately in much of elastic wave theory, and for many applications, one 
actually has the opposite physical situation to that of a thin plate, that is, one has an elastic material with infinite 
depth; on the surface of such a half-space elastic surface waves, Rayleigh waves, exist25,26 that exponentially decay 
with depth and have much in common conceptually with surface plasmons in electromagnetism. It is therefore 
attractive to investigate whether concepts proven in plasmonics can be translated across despite the underlying 
governing equations having many fundamental differences. Some experimental work has taken place in broadly 
related scenarios such as the attenuation of Rayleigh waves at high frequencies in a marble quarry with cylindri-
cal holes27 and in piezo-electric substrates with pillars28, but with differing aims and not at frequencies relevant 
for seismic waves. Some work on structured elastic media, going beyond elastic plates, to try and create seismic 
metamaterials29–31 is underway with some success either with subwavelength resonators31 or with periodic struc-
turing within the soil30 and trying to still utilise flexural wave modelling. Our aim here is complementary in that 
we want to implement ideas from transformation optics into this elastic surface wave area and investigate what 
can be achieved.
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The desire, and need, to control the flow of waves is common across wave physics in electromagnetic, acoustic 
and elastic wave systems32. Acoustics is, mathematically, a simplified version of full elasticity with only compres-
sional waves present: full elasticity has both shear and compression, with different wave speeds, and full coupling 
between them - leading to a formidable vector system. The quest for a perfect flat lens33,34 with unlimited resolu-
tion and an invisibility cloak12,13 that could conceal an object from incident light via transformation optics35 are 
exemplars for the level of control that can, at least, in theory be achieved for light36 or sound37–39. An invisibility 
cloak for mechanical waves is also envisioned40,41 for bulk waves, and experiments using latest developments in 
nanotechnology support these theoretical concepts42. However, some form of negative refractive index appears 
to be necessary to achieve an almost perfect cloak. Unfortunately, a negative index material emerges from a very 
complex microstructure that is not feasible for the physical length-scales, that for seismic waves at frequency 
lower than 10 Hz means wavelengths of the order of a hundred meters, in geophysical applications. Notably one 
can design locally resonant metamaterials that feature deeply subwavelength bandgaps31 and so could be used in 
seismic and acoustic contexts, but these effects are observed over a limited frequency band; this is being improved 
to allow for simultaneous protection and cloaking24 and has potential. However, here we look at protection and 
cloaking, applied to low frequency seismic waves, using the concept of lensing.

Elastic waves, in the same way as light, are subject to Snell’s law of refraction, and an appropriate choice of 
material properties leads to spectacular effects like those created by gradient index (GRIN) lenses. Compared to 
a classic lens where ray-paths are bent through discontinuous interfaces causing losses and aberrations, GRIN 
lenses are obtained with a smooth refractive index transition. Rayleigh and Maxwell themselves studied GRIN 
lenses, notably Maxwell’s fisheye whose spatially varying refractive index was later shown to be associated with 
a stereographic projection of a sphere on a plane43. As noted in43 GRIN lenses have been mainly studied and 
implemented for optical applications, or wave systems governed by the Helmholtz equation. The ideas behind 
transformation optics are not limited to metamaterial-like applications and have contributed to recent advances 
in plasmonic light confinement by touching metallic nanostructures44,45.

A classical example of a GRIN lens is the circular Luneburg lens43,46, once a plane wave enters the lens, its 
radially varying refraction index steers the ray-path towards a focal point located on the opposite side of the 
lens47. The eponymous fisheye lens of Maxwell48 is another well documented and fascinating GRIN lens and it has 
been proposed as a non-Euclidean cloak. To date, applications have been mainly limited to scalar wave systems 
governed by Helmholtz type operators for transversely polarized electromagnetic waves49, for pressure waves or 
platonics where composite and thickness modulated plates have recently been proposed50–53. In full elasticity, 
where the propagation is described by the vector Navier equation that is neither simply a Helmholtz equation or 
scalar, a proof of concept is still missing. Experimentally, for seismic waves, the realization of any proposed lens-
ing arrangement becomes a real challenge because wavelengths range from 20 m to 500 m. For real applications, 
wave control must be achieved over a broad frequency band, to cover the various wavelengths of interest; unlike 
other metamaterial cloak designs such as those based around subwavelength resonators24, the lens proposed here 
is effective across a very broad spectrum of frequencies.

In civil engineering the structuring or reinforcement of soils is commonplace with geotechnical solutions 
aimed at improving soil seismic performances54 (e.g. soil improvement by dynamic compaction, deep mixing and 
jet grouting), typically implemented prior to construction of structures, aimed to rigidify or decouple the building 
response and not at rerouting the seismic input. In the conceptual lens we design, the structuring of the soil is 
feasible and we use material parameters typical of poorly compacted sediments. Using the ideas of transformation 
optics, and detailed 3D numerical simulations, we show that a square arrangement of four Luneburg lenses can 
completely reroute waves around an area for seismic waves coming with perpendicular incident directions (e.g. x 
and y in Fig. 1b). Not only are the waves rerouted leaving the inner region protected, but the wave-front is recon-
structed coherently after leaving the arrangement of lenses.

Figure 1.  The vertical component of the displacement field is depicted at the onset time along with the 
meshed model of the halfspace that is used as input for the SPECFEM3D simulations. The force generating 
the plane surface waves is represented only in its vertical component. The building is made of stiffer material 
and it is also meshed with the halfspace. Dimensions are not to scale. (b) Same as (a) but here we see the pillars 
forming the lens that enclose and protect the building. (c) The velocity profile as function of the radius is 
depicted in blue for equation (1) and in gray for the effective velocity of each cell. The inset shows a zoomed 
view of the cylindrical pillar and the cell.
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Luneburg Lens for Seismic Surface Waves
In his seminal work, Luneburg46 derived a spherical optical lens with radially varying refractive index that focused 
a beam of parallel rays to a point at the opposite side of the lens; a two dimensional variant is straightforward to 
deduce. Of course this relies upon the governing equation being the Helmholtz equation, which the full elastic 
equations certainly are not. However, it was realised in elasticity many years ago55 that one could deduce gov-
erning equations specifically for surface waves and that asymptotically, for Rayleigh waves, a governing wave 
equation upon the surface can be deduced whose wavespeed is the Rayleigh wave56. Using this insight we model 
the Rayleigh wave solution as obeying a surface Helmholtz equation and then utilise the usual transformation 
optics approach. Thus the concepts advanced by Luneburg translate unchanged to a plane wavefront of seismic 
waves travelling on the Earth surface through a lens to a point located on the boundary of the lens. One can also 
think of this using a ray-theory approach and note that an asymptotic surface wave ray theory is well-developed 
and used in seismology57.

In the model configuration presented here the elastic energy is primarily carried by Rayleigh surface waves; 
they are a particular solution of Navier’s equation for elastodynamics for a half-space bounded by a traction-free 
surface, e.g. the Earth’s surface. Well known in seismology, for the idealised situation of isotropic and homogene-
ous media Rayleigh waves are non-dispersive, elliptically polarized and in practical terms25 they have a velocity 
very close to that of shear waves: µ ρ=v /s

2  where μ is the shear modulus and ρ the density58 so for simplicity we 
will simply use the shear wave speed in our analysis. Shear horizontally polarized waves (SH) are also present in 
our numerical model, and they also propagate with wavespeed vs; notably SH waves are governed by a Helmholtz 
equation without any approximation. We do not consider Love waves here, which can also be important is seis-
mology, as they only exist for stratified layered media and we assume that our elastic half space is vertically homo-
geneous, that is, the material parameters do not vary with depth. In Cartesian coordinates we take z to be the 
depth coordinate and x, y to be in the plane of the surface, then the Rayleigh waves can be represented using a 
Helmholtz equation on the surface and we consider a circular lens on the x-y plane as in Fig. 1c, is characterized 
by a radially varying refraction profile47. This lens, and the associated material variation, then extends downwards 
and the material is considered vertically homogeneous; we distinguish the material outside the lens to have 
parameters with a subscript 0 and that inside to have subscript 1.

The refraction index n between two media, say, material 0 and material 1 can be formulated in terms of the 
ratio of velocity contrast =n v
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Taking a continual material variation is perfect for theory, but from a practical perspective it is not possible 
to realize a circular structure 10’s of meters in depth and radius, whose soil properties change smoothly (e.g. on 
the scale of Fig. 1c). Instead we create a composite soil made of bimaterial cells such that their effective material 
properties have the variation we desire, this provides a realistic lens using actual soil parameters that could be 
created using conventional geotechnical techniques54,59.

In Fig. 1c the circular surface of the lens is discretized using equally spaced cells on a periodic square lattice. 
Each cell contains an inclusion of softer material that, in our illustration, is represented by a pillar extending down 
into the soil; the exponential decay of the Rayleigh wave amplitude with depth means that for the computational 
model we can truncate this and a depth of 30 m is more than sufficient. The diameter of each pillar is determined 
using the effective velocity prescribed for each cell based upon its radial position (r) from the center of the lens. 
Assuming a square section cell of width l on the x-y plane the filling fraction is defined using the surface area 
occupied by the pillar in the cell. For cylindrical pillars with diameter d (Fig. 1c) we have a geometrical filling 
fraction, f, with = − πf 1 d

l4

2

2 . The Maxwell-Garnett formula60,61, which we take for two-dimensional planar com-
posites with cylindrical inclusions thereby consistent with our viewpoint of the surface being governed by a sur-
face wave equation, relates the filling fraction with the corresponding effective property:
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where vse is the effective shear velocity in the cell and vi is the shear velocity of the inclusion (the pillar). We com-
bine the geometrical definition of f with (3) to obtain the effective velocity as a function of inclusion size. Hence, 
by tuning the pillar diameter we obtain the required velocity variation desired in Eq. 2 and use this to define the 
structure and variation for each of the Luneburg lenses one of which is shown in (Fig. 1c).

We now place four Luneburg lenses as shown in Fig. 1b and use these to protect an object placed in the space 
between them. The idea is simply that a plane wave incident along either the x or y axes will be focussed by the 
lens to a single point, the point at which the cylinder touches its neighbour, which will then act as source into the 
next Luneburg lens and the plane wave will then re-emerge unscathed; the building to be protected should, in 
this perfect scheme, be untouched. We are aiming to demonstrate the concept not in a perfect scenario, but using 
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realistic parameters and a setting in which the effective medium approach provide a discrete velocity profile, yet 
the protection achieved is considerable.

To construct the Luneburg lenses, to reach the minimum vs prescribed in Eq. 1, vi needs be lower than 350 m/s. 
We choose a vi of 200 m/s which is a value that is realistic for poorly consolidated soil (sand or water filled sedi-
ments)62,63. In the lens configuration depicted in Fig. 1b,c for each lens there are 26 elementary cells (~6 ×  6 m) 
along the radial axis of the lens and the diameter of the pillars increases towards the center of the lens as discussed 
earlier. In the frequency range we investigate (3–8 Hz), the inclusion is deeply subwavelength and non-resonant. 
The only parameter of interest for the lens design using composite soil is the filling fraction, so there is no bound 
on the size of the elementary cell so long as it remains subwavelength to avoid Bragg scattering phenomena; in 
our simulations the minimum size of each cell is bounded for numerical reasons (explained in the next section). 
For an actual implementation of the lens the cell could be chosen to be even smaller than our choice here with 
corresponding decrease in the pillar diameters. A maximum diameter of approximately 2 m would permit the 
pillars to be realised with existing geotechnical machineries54,59.

Numerical Implementation of  The Luneburg Lens
Three dimensional numerical simulations of seismic elastic surface waves are implemented using SPECFEM3D: 
a parallelized, time domain, and spectral element solver for 3D elastodynamic problems widely used in the seis-
mology community64.

The reference computational domain, depicted in Fig. 1a, is a 40 m depth halfspace 350 ×  500 m wide of 
homogeneous sedimentary material with background velocity vs set to 400 m/s. The computational elastic region, 
apart from the surface itself, is surrounded by perfectly matched layers (PMLs)65 that mimic infinity and prevent 
unwanted reflections from the computational boundaries and these are standard in elastic wave simulation66.

A small building with a flexural fundamental mode of approximately 4 Hz is located at the center of the model. 
We place a line of broadband Ricker source time functions centered at 5 Hz to generate an almost perfectly plane 
wavefront (Fig. 1a,b). The driving force F has equal components in all 3 orthogonal directions and hence the 
resulting excitation is not only made of Rayleigh but also of SH waves. Body waves leave the computational 
domain and pass into the PML at the bottom and side boundaries of the computational domain; their interaction 
with the structure and the lens is negligible. This configuration could represent the upper layer of a deep sedimen-
tary basin with some strategic structure located at the surface (power plants, data centers, hospitals) desired to 
be shielded from a seismic energy source. In Fig. 1b representing the building surrounded by the square array of 
lenses, the pillars are inserted as softer inclusions in the background velocity model. This approach is commonly 
used67,68 to simplify the discretization of complex models. We use very fine meshing (down to 2 m) and this, com-
bined with the 5th order accuracy in space of the spectral element method, allows us to accurately model pillars 
down to a smallest diameter of 0.3 m. This approach was validated against a model where the pillars were meshed 
explicitly; the only notable difference was a factor of 5 increase in the runtime for the explicit case vis-a-vis the 
regular mesh. SPECFEM3D is a parallel code and simulations are run on 64 cores for a total of approx. 30 core-
hours for a simulated time of 1.5 seconds with the 3D wavefield saved for post-processing; SPECFEM3D is the 
standard geophysics code used in academic and industry applications with a long history of development and 
application64.

Results
This simulation is shown for wave-field snapshots for different propagation distances in Fig. 2 both with, and 
without the lenses. The sources generating the plane wavefront in Fig. 1 are located at the surface and so most of 
the seismic energy propagates as Rayleigh and SH waves. The vertical component of the displacement u shown 
in Fig. 2, is dominated by the elliptically polarized motion of the Rayleigh waves. Although not visible, SH waves 
behave very similarly to Rayleigh waves for the model here discussed, body waves have far lower amplitude and 
are not relevant to our analysis. Figure 2a shows, as one would expect, the strong scattering by the building and 
its highly oscillatory motion. When the Luneburg lenses are inserted in the model (Fig. 2b) the simulation shows 
that the Rayleigh wave front splits and then progressively converges to the focal points of lenses L1 and L2. Given 
the square layout, the focal points lie exactly at the touching points of the L1–L3 and L2–L4 lenses. This lens does 
not support any subwavelength phenomena (the evanescent part is lost) hence, the size of the focal spot is diffrac-
tion limited at λ/2n and some energy is backscattered during the focusing process creating some low amplitude 
reflections. The second lenses (L3 and L4) behave in a reciprocal manner converting the two point (secondary) 
source-like wavefields back into a plane wavefront. During the entire process, the inner region where the building 
is placed has experienced a very low seismic excitation as compared to the reference unprotected case. Figure 3 
presents the motion of the roof of the reference building on a dB scale and it shows the vibration is drastically 
reduced. The snapshots in the bottom row of Fig. 2 showing the wavefront as it emerges from the lenses shows 
that despite the strong alteration of the ray-path, the reconstruction of the wavefront after the lenses is surpris-
ingly good. To validate the wavefront reconstruction, Fig. 2 shows equal-propagation-distance snapshots rather 
than equal-time to compensate the different propagation speed in the reference and in the protected case. Hence 
this device combines the some cloaking behaviour with the seismic protection. Considering the broad frequency 
bandwidth of the input signal this is an interesting result as most cloaks so far proposed have problems with 
broadband excitation. The velocity structure of the lenses is such that the propagation of the wavefront in Fig. 2b 
is slightly slower than the reference configuration of Fig. 2a. Thus, we observe cloaking functionality to be valid 
for the wave envelope but not for the phase. This is not particularly relevant in the present seismic context where 
the only application of cloaking is to avoid very directive scattering, it would be unfortunate and undesirable to 
scatter or refocus the signal to a neighbouring building, while simultaneously realising seismic protection.

A quantitative analysis of the wavefield is presented in Fig. 3a,b which show the energy maps for the reference 
and protected cases. The energy is calculated at the surface (z =  0) taking the L2 norm of the three components 
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of the displacement field u(x, y, 0). In the homogeneous case (Fig. 3a) of the unprotected building the energy is 
almost uniform across the whole computational domain making the building resonate. In the protected case, 
the energy is focused towards the axes of symmetry of the lenses, leaving a central region relatively undisturbed; 
in the two stripes shown in Fig. 3b the energy (and equally the amplitude) is much higher than elsewhere. The 
motion of the Rayleigh and SH waves is maximal at the surface (z =  0) and decays exponentially with depth. 
Given their long wavelength (50–100 m) relative to the pillar length (30 m), the energy distribution will also decay 
exponentially with depth but the energy flow pattern of Fig. 3b (which is normalised in each depth cross-section) 
will remain identical for the whole pillar length.

Strong resonances in buildings are typically due to waves amplified by the underlying soft sedimentary soil 
(characterised by vs ≤  500 m/s) in a frequency range overlapping the horizontal resonant modes of the structure. 
In the extreme case of an earthquake this phenomenon may lead to structural failures with well known dramatic 
consequences. Damping of strong ground motion and soil-structure decoupling are therefore two key concepts 
in civil engineering. The rooftop horizontal displacement (roof drift)69 is a diagnostic of the amplification phe-
nomena due to the resonance frequency of the structure. Since this device is aimed at reducing anthropic noise 
in vibration-sensitive infrastructures rather than offering earthquake protection, also the vertical component of 
the motion (uz) must be considered. Vibrations produced by human activity are characterised by both in-plane 
and out-of-plane waves (SH, Rayleigh or higher modes) e.g.70. Figure 3c shows the frequency response function 
for the horizontal and vertical components of the motion recorded at the top of the building with, and without, 
the lenses. Over the whole spectrum an average amplitude reduction of 6 dB is achieved which is reduction of 
almost an order of magnitude in the vibration. While the frequency response in the vertical component is almost 

Figure 2.  (a) Snapshot of the vertical component of the wavefield for the homogeneous case for different 
propagation distances from the source (approximated values). The source position, from which distance is 
measured, is shown in the top snapshots. The colorscale is in normalised unit and saturated. (b) Same as (a) but 
with the lenses present. Full video available as supplementary material.
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flat, the horizontal direction depicts more complex dynamic characterised by the fundamental horizontal mode 
of the building occurring at ~4.5 Hz. The vertical mode occurs at much higher frequency and it is not excited by 
the source. Complete cancellation of the wavefield is not achieved primarily because the evanescent field slightly 
couples with the building and as we focus the wavefield to a point source we introduce some back scattering that 
also interacts with the building (Fig. 2b). Nonetheless the concept is demonstrated and shows that one can suc-
cessfully translate ideas from optics into the field of elastic seismic waves; Figs 2 and 3 should inspire the use of 
these concepts to both reroute surface waves and to reduce their impact on surface structures.

Discussion
We have combined concepts from transformation optics and plasmonics, composite media, and elastic wave the-
ory to create an arrangement of seismic Luneburg lenses that can reroute and reconstruct plane seismic surface 
waves around a region that must remain protected. The lens is made with a composite soil obtained with columns 
of softer soil material with varying diameter distributed on a regular lattice. The use of softer soil inclusions 
emphasises that the methodology we propose is not reflection of waves, or absorption, or damping for which 
rigid or viscoelastic columns might be more intuitive; the softer inclusions are designed to progressively alter the 
material itself so that waves are “steered” and the reconstruction of the wavefronts after exiting the arrangement 
illustrates the mechanism. The Luneberg lens arrangement proposed here could be tested in a small scale experi-
ment using elastic materials, such as metals, as the concept itself is very versatile or on larger scale test areas where 
one could then evaluate effects such as nonlinearity. Although presented in the context of seismic engineering 
there are everyday ground vibration topics that could benefit from this design. The damping of anthropic vibra-
tion sources (e.g. train-lines, subway, heavy industry) is very important for high precision manufacturing process, 
to reduce structural damage due to fatigue71 or simply to decrease domestic or commercial building vibrations.

Our aim here has been to present the concept of steering elastic surface waves completely in context and with 
a design that could be built, this should motivate experiments, further design and the implementation of ideas 
now widely appreciated in electromagnetism and acoustics to this field. One important practical point regarding 
our design is that we have presented normal incidence to the four Luneberg lens and this is practical, of course, if 
the position of the vibration (a railway line for instance) is known. Figure 4a shows the average differential energy 
between reference and protected case calculated underneath the building for various incidence angles of the 
wavefront. The protection progressively deteriorates as the incidence angle of the plane wave increases; at 45°, the 
focal point is in the centre of the region (Fig. 4b) and the energy is steered to this point.

The concept of using soil mediation to steer surface elastic waves is clear and the Luneburg arrangement is a 
clear exemplar of the ideas. The proposed design is easily adapted to higher frequency bands and smaller regions. 
If one is only interested in seismic protection, and less in the wavefront reconstruction, the lenses can be struc-
tured differently with only one or two lenses. The other well-known GRIN lenses offer different extents and types 
of wave control (e.g. Maxwell, Eaton72) can provide an isotropic wave shielding. Other types of GRIN lenses and 
layout (for instance using 4 half-Maxwell lenses as shown in optics47) can be utilised; however the Luneburg lens 
requires the lowest velocity contrast between the lens and exterior region and we choose to use it as practically 
it could be implemented. The main practical difficulty is that these lenses are either singular (an Eaton lens has 
vs =  0 m/s in the center) or prescribe stronger velocity contrast (Maxwell) requiring difficult (or not yet available) 
soil engineering solutions.

Methods
The propagation of seismic waves in a 3D halfspace is a well-known problem in numerical seismology and mod-
eled applying PMLs condition on all boundaries but for the top-surface that is traction-free. The accuracy of the 

Figure 3.  (a) Maps of the elastic energy distribution at the surface (z =  0) for the homogenous case. Same as 
(b) but for the lenses case. (c) Spectral density of the rooftop motion of the building in dB. In the upper panel, 
the blue trace is calculated for the homogeneous case while the black is obtained when the lenses enclose the 
building. The lower panel is identical, but now for the vertical component.
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method has been thoroughly tested using plate and rods as input model and it has delivered excellent results. The 
3D time domain simulations are carried out using SPECFEM3D a code that solves the elastic wave equation using 
finite difference in time and the spectral element method in space. The parallelization is implemented through 
domain decomposition with MPI. The mesh is made of hexahedra elements and it is generated using the commer-
cial software CUBIT. Simulations are then run on a parallel cluster (Curie at TGCC Paris) on 64 CPUs. 3D plots 
and video have been generated with Paraview and Matplotlib.
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