12 research outputs found

    Linear tuning of gamma amplitude and frequency to luminance contrast: evidence from a continuous mapping paradigm

    Get PDF
    Individual differences in the visual gamma (30–100Hz) response and their potential as trait markers of underlying physiology (particularly related to GABAergic inhibition) have become a matter of increasing interest in recent years. There is growing evidence, however, that properties of the gamma response (e.g., its amplitude and frequency) are highly stimulus dependent, and that individual differences in the gamma response may reflect individual differences in the stimulus tuning functions of gamma oscillations. Here, we measured the tuning functions of gamma amplitude and frequency to luminance contrast in eighteen participants using MEG. We used a grating stimulus in which stimulus contrast was modulated continuously over time. We found that both gamma amplitude and frequency were linearly modulated by stimulus contrast, but that the gain of this modulation (as reflected in the linear gradient) varied across individuals. We additionally observed a stimulus-induced response in the beta frequency range (10–25Hz), but neither the amplitude nor the frequency of this response was consistently modulated by the stimulus over time. Importantly, we did not find a correlation between the gain of the gamma-band amplitude and frequency tuning functions across individuals, suggesting that these may be independent traits driven by distinct neurophysiological processes

    Electrophysiological network alterations in adults with copy number variants associated with high neurodevelopmental risk

    Get PDF
    Rare copy number variants associated with increased risk for neurodevelopmental and psychiatric disorders (referred to as ND-CNVs) are characterized by heterogeneous phenotypes thought to share a considerable degree of overlap. Altered neural integration has often been linked to psychopathology and is a candidate marker for potential convergent mechanisms through which ND-CNVs modify risk; however, the rarity of ND-CNVs means that few studies have assessed their neural correlates. Here, we used magnetoencephalography (MEG) to investigate resting-state oscillatory connectivity in a cohort of 42 adults with ND-CNVs, including deletions or duplications at 22q11.2, 15q11.2, 15q13.3, 16p11.2, 17q12, 1q21.1, 3q29, and 2p16.3, and 42 controls. We observed decreased connectivity between occipital, temporal and parietal areas in participants with ND-CNVs. This pattern was common across genotypes and not exclusively characteristic of 22q11.2 deletions, which were present in a third of our cohort. Furthermore, a data-driven graph theory framework enabled us to successfully distinguish participants with ND-CNVs from unaffected controls using differences in node centrality and network segregation. Together, our results point to alterations in electrophysiological connectivity as a putative common mechanism through which genetic factors confer increased risk for neurodevelopmental and psychiatric disorders

    Attenuated post-movement beta rebound associated with schizotypal features in healthy people

    Get PDF
    Introduction: Schizophrenia and Schizotypal Personality Disorder (SPD) lie on a single spectrum of mental illness and converging evidence suggests similarities in the etiology of the two conditions. However, schizotypy is a heterogeneous facet of personality in the healthy population and so may be seen as a bridge between health and mental illness. Neural evidence for such a continuity would have implications for the characterization and treatment of schizophrenia. Based on our previous work identifying a relationship between symptomology in Schizophrenia and abnormal movement-induced electrophysiological response (the post-movement beta rebound (PMBR)), we predicted that if subclinical schizotypy arises from similar neural mechanisms to schizophrenia, schizotypy in healthy individuals would be associated with reduced PMBR. Methods: 116 participants completed a visuomotor task whilst their neural activity was recorded by magnetoencephalography. Partial correlations were computed between a measure of PMBR extracted from left primary motor cortex and scores on the Schizotypal Personality Questionnaire (SPQ), a self-report measure of schizotypal personality. Correlations between PMBR and SPQ factor scores measuring Cognitive-Perceptual, Interpersonal and Disorganization dimensions of schizotypy were also computed. Effects of site, age, and sex were controlled for. Results: We found a significant negative correlation between total SPQ score and PMBR. This was most strongly mediated by variance shared between Interpersonal and Disorganization factor scores. Conclusion: These findings indicate a continuum of neural deficit between schizotypy and schizophrenia, with diminution of PMBR, previously reported in schizophrenia, also measurable in individuals with schizotypal features, particularly disorganization and impaired interpersonal relations

    Attenuated post-movement beta rebound associated with schizotypal features in healthy people

    Get PDF
    Introduction: Schizophrenia and Schizotypal Personality Disorder (SPD) lie on a single spectrum of mental illness and converging evidence suggests similarities in the etiology of the two conditions. However, schizotypy is a heterogeneous facet of personality in the healthy population and so may be seen as a bridge between health and mental illness. Neural evidence for such a continuity would have implications for the characterization and treatment of schizophrenia. Based on our previous work identifying a relationship between symptomology in Schizophrenia and abnormal movement-induced electrophysiological response (the post-movement beta rebound (PMBR)), we predicted that if subclinical schizotypy arises from similar neural mechanisms to schizophrenia, schizotypy in healthy individuals would be associated with reduced PMBR. Methods: 116 participants completed a visuomotor task whilst their neural activity was recorded by magnetoencephalography. Partial correlations were computed between a measure of PMBR extracted from left primary motor cortex and scores on the Schizotypal Personality Questionnaire (SPQ), a self-report measure of schizotypal personality. Correlations between PMBR and SPQ factor scores measuring Cognitive-Perceptual, Interpersonal and Disorganization dimensions of schizotypy were also computed. Effects of site, age, and sex were controlled for. Results: We found a significant negative correlation between total SPQ score and PMBR. This was most strongly mediated by variance shared between Interpersonal and Disorganization factor scores. Conclusion: These findings indicate a continuum of neural deficit between schizotypy and schizophrenia, with diminution of PMBR, previously reported in schizophrenia, also measurable in individuals with schizotypal features, particularly disorganization and impaired interpersonal relations

    Oscillatory hyperactivity and hyperconnectivity in young APOE-ɛ4 carriers and hypoconnectivity in Alzheimer's disease

    Get PDF
    We studied resting-state oscillatory connectivity using magnetoencephalography in healthy young humans (N = 183) genotyped for APOE-ɛ4, the greatest genetic risk for Alzheimer’s disease (AD). Connectivity across frequencies, but most prevalent in alpha/beta, was increased in APOE-ɛ4 in a set of mostly right-hemisphere connections, including lateral parietal and precuneus regions of the Default Mode Network. Similar regions also demonstrated hyperactivity, but only in gamma (40–160 Hz). In a separate study of AD patients, hypoconnectivity was seen in an extended bilateral network that partially overlapped with the hyperconnected regions seen in young APOE-ɛ4 carriers. Using machine-learning, AD patients could be distinguished from elderly controls with reasonable sensitivity and specificity, while young APOE-e4 carriers could also be distinguished from their controls with above chance performance. These results support theories of initial hyperconnectivity driving eventual profound disconnection in AD and suggest that this is present decades before the onset of AD symptomology

    Non-invasive brain mapping in epilepsy: applications from magnetoencephalography

    No full text
    Background Non-invasive in vivo neurophysiological recordings with EEG/MEG are key to the diagnosis, classification, and further understanding of epilepsy. Historically the emphasis of these recordings has been the localisation of the putative sources of epileptic discharges. More recent developments see new techniques studying oscillatory dynamics, connectivity and network properties. New method New analysis strategies for whole head MEG include the development of spatial filters or beamformers for source localisation, time–frequency analysis for cortical dynamics and graph theory applications for connectivity. Results The idea of epilepsy as a network disorder is not new, and new applications of structural and functional brain imaging show differences in cortical and subcortical networks in patients with epilepsy compared to controls. Concepts of ‘focal’ and ‘generalised’ are challenged by evidence of focal onsets in generalised epileptic discharges, and widespread network changes in focal epilepsy. Spectral analyses can show differences in induced cortical response profiles, particularly in photosensitive epilepsy. Comparison with existing method This review focuses on the application of MEG in the study of epilepsy, starting with a brief historical perspective, followed by novel applications of source localisation, time–frequency and connectivity analyses. Conclusion Novel MEG analyses approaches show altered cortical dynamics and widespread network alterations in focal and generalised epilepsies, and identification of regional network abnormalities may have a role in epilepsy surgery evaluation

    Linear fit parameters of gamma amplitude and frequency tuning to contrast.

    No full text
    <p>Linear fit parameters of gamma amplitude and frequency tuning to contrast.</p

    Comparison of fit gradients for gamma amplitude and frequency.

    No full text
    <p>Plot showing the linear fit gradient of the frequency tuning function against the linear fit gradient of the amplitude tuning function for each participant, alongside histograms showing the group distribution of each parameter. The colour of each point in the central plot matches the colour of the lines of the corresponding participant number in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0124798#pone.0124798.g002" target="_blank">Fig 2</a>.</p

    Stimulus display, temporal envelope of contrast modulation and group average spectrograms.

    No full text
    <p>a) Example of the visual display with stimulus at 100% contrast. b) Visual representation of the temporal envelope of contrast modulation applied during presentation of a stimulus. c) Group average spectrogram after averaging across cycles and plotting against stimulus contrast. The colour scale represents amplitude as % change from baseline. d) Group average spectrogram of the response to the visual stimulus at the location of the virtual sensors. Stimulus onset was at 0 s, stimulus modulation was from 1–14.5 s, and stimulus offset was at 15.5 s. The colour scale represents amplitude as % change from baseline.</p
    corecore