20 research outputs found

    Systematic Single-Cell Analysis of Pichia pastoris Reveals Secretory Capacity Limits Productivity

    Get PDF
    Biopharmaceuticals represent the fastest growing sector of the global pharmaceutical industry. Cost-efficient production of these biologic drugs requires a robust host organism for generating high titers of protein during fermentation. Understanding key cellular processes that limit protein production and secretion is, therefore, essential for rational strain engineering. Here, with single-cell resolution, we systematically analysed the productivity of a series of Pichia pastoris strains that produce different proteins both constitutively and inducibly. We characterized each strain by qPCR, RT-qPCR, microengraving, and imaging cytometry. We then developed a simple mathematical model describing the flux of folded protein through the ER. This combination of single-cell measurements and computational modelling shows that protein trafficking through the secretory machinery is often the rate-limiting step in single-cell production, and strategies to enhance the overall capacity of protein secretion within hosts for the production of heterologous proteins may improve productivity

    Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches

    Get PDF
    Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly

    Optimal signal-to-noise ratio for silicon nanowire biochemical sensors

    No full text
    The signal-to-noise ratio (SNR) for silicon nanowire field-effect transistors operated in an electrolyte environment is an essential figure-of-merit to characterize and compare the detection limit of such devices when used in an exposed channel configuration as biochemical sensors. We employ low frequency noise measurements to determine the regime for optimal SNR. We find that SNR is not significantly affected by the electrolyte concentration, composition, or pH, leading us to conclude that the major contributions to the SNR come from the intrinsic device quality. The results presented here show that SNR is maximized at the peak transconductance

    Comparative genome‐scale analysis of Pichia pastoris variants informs selection of an optimal base strain

    No full text
    © 2019 The Authors. Biotechnology and Bioengineering published by Wiley Periodicals, Inc. Komagataella phaffii, also known as Pichia pastoris, is a common host for the production of biologics and enzymes, due to fast growth, high productivity, and advancements in host engineering. Several K. phaffii variants are commonly used as interchangeable base strains, which confounds efforts to improve this host. In this study, genomic and transcriptomic analyses of Y-11430 (CBS7435), GS115, X-33, and eight other variants enabled a comparative assessment of the relative fitness of these hosts for recombinant protein expression. Cell wall integrity explained the majority of the variation among strains, impacting transformation efficiency, growth, methanol metabolism, and secretion of heterologous proteins. Y-11430 exhibited the highest activity of genes involved in methanol utilization, up to two-fold higher transcription of heterologous genes, and robust growth. With a more permeable cell wall, X-33 displayed a six-fold higher transformation efficiency and up to 1.2-fold higher titers than Y-11430. X-33 also shared nearly all mutations, and a defective variant of HIS4, with GS115, precluding robust growth. Transferring two beneficial mutations identified in X-33 into Y-11430 resulted in an optimized base strain that provided up to four-fold higher transformation efficiency and three-fold higher protein titers, while retaining robust growth. The approach employed here to assess unique banked variants in a species and then transfer key beneficial variants into a base strain should also facilitate rational assessment of a broad set of other recombinant hosts
    corecore