6 research outputs found

    Identification of Marine Biotechnology Value Chains with High Potential in the Northern Mediterranean Region

    Get PDF
    ©2023. This manuscript version is made available under the CC-BY 4.0 license http://creativecommons.org/licenses/by/4.0/ This document is the Published, version of a Published Work that appeared in final form in Marine Drugs. To access the final edited and published work see https://doi.org/ 10.3390/md21070416Marine (blue) biotechnology is an emerging field enabling the valorization of new products and processes with massive potential for innovation and economic growth. In the Mediterranean region, this innovation potential is not exploited as well as in other European regions due to a lack of a clear identification of the different value chains and the high fragmentation of business innovation initiatives. As a result, several opportunities to create an innovative society are being missed. To address this problem, eight Northern Mediterranean countries (Croatia, France, Greece Italy, Montenegro, Portugal, Slovenia and Spain) established five national blue biotechnology hubs to identify and address the bottlenecks that prevent the development of marine biotechnology in the region. Following a three-step approach (1. Analysis: setting the scene; 2. Transfer: identifi cation of promising value chains; 3. Capitalization: community creation), we identified the three value chains that are most promising for the Northern Mediterranean region: algae production for added-value compounds, integrated multi-trophic aquaculture (IMTA) and valorization aquacul ture/fisheries/processing by-products, unavoidable/unwanted catches and discards. The potential for the development and the technical and non-technical skills that are necessary to advance in this exciting field were identified through several stakeholder events which provided valuable insight and feedback that should be addressed for marine biotechnology in the Northern Mediterranean region to reach its full potential

    Identification of Marine Biotechnology Value Chains with High Potential in the Northern Mediterranean Region

    Get PDF
    © 2023. The authors. This document is made available under the CC-BY 4.0 license http://creativecommons.org/licenses/by /4.0/ This document is the Accepted version of a Published Work that appeared in final form in Marine Drugs. To access the final edited and published work see https://doi.org/10.3390/md21070416Marine (blue) biotechnology is an emerging field enabling the valorization of new products and processes with massive potential for innovation and economic growth. In the Mediterranean region, this innovation potential is not exploited as well as in other European regions due to a lack of a clear identification of the different value chains and the high fragmentation of business innovation initiatives. As a result, several opportunities to create an innovative society are being missed. To address this problem, eight Northern Mediterranean countries (Croatia, France, Greece, Mar. Drugs 2023, 21, 416. https://doi.org/10.3390/md21070416 https://www.mdpi.com/journal/marinedrugs Mar. Drugs 2023, 21, 416 2 of 26 Italy, Montenegro, Portugal, Slovenia and Spain) established five national blue biotechnology hubs to identify and address the bottlenecks that prevent the development of marine biotechnology in the region. Following a three-step approach (1. Analysis: setting the scene; 2. Transfer: identification of promising value chains; 3. Capitalization: community creation), we identified the three value chains that are most promising for the Northern Mediterranean region: algae production for added-value compounds, integrated multi-trophic aquaculture (IMTA) and valorization aquaculture/fisheries/processing by-products, unavoidable/unwanted catches and discards. The potential for the development and the technical and non-technical skills that are necessary to advance in this exciting field were identified through several stakeholder events which provided valuable insight and feedback that should be addressed for marine biotechnology in the Northern Mediterranean region to reach its full potential

    Metabolic acidosis may be as protective as hypercapnic acidosis in an ex-vivo model of severe ventilator-induced lung injury: a pilot study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is mounting experimental evidence that hypercapnic acidosis protects against lung injury. However, it is unclear if acidosis <it>per se </it>rather than hypercapnia is responsible for this beneficial effect. Therefore, we sought to evaluate the effects of hypercapnic (respiratory) versus normocapnic (metabolic) acidosis in an ex vivo model of ventilator-induced lung injury (VILI).</p> <p>Methods</p> <p>Sixty New Zealand white rabbit ventilated and perfused heart-lung preparations were used. Six study groups were evaluated. Respiratory acidosis (RA), metabolic acidosis (MA) and normocapnic-normoxic (Control - C) groups were randomized into high and low peak inspiratory pressures, respectively. Each preparation was ventilated for 1 hour according to a standardized ventilation protocol. Lung injury was evaluated by means of pulmonary edema formation (weight gain), changes in ultrafiltration coefficient, mean pulmonary artery pressure changes as well as histological alterations.</p> <p>Results</p> <p>HPC group gained significantly greater weight than HPMA, HPRA and all three LP groups (P = 0.024), while no difference was observed between HPMA and HPRA groups regarding weight gain. Neither group differ on ultrafiltration coefficient. HPMA group experienced greater increase in the mean pulmonary artery pressure at 20 min (P = 0.0276) and 40 min (P = 0.0012) compared with all other groups. Histology scores were significantly greater in HP vs. LP groups (p < 0.001).</p> <p>Conclusions</p> <p>In our experimental VILI model both metabolic acidosis and hypercapnic acidosis attenuated VILI-induced pulmonary edema implying a mechanism other than possible synergistic effects of acidosis with CO2 for VILI attenuation.</p

    Modulation of intestinal health and hepatic vacuolation in gilthead sea bream (Sparus aurata) juveniles by a mixture of dietary esterified butyrins, emulsifiers from plants and yeast extracts at low and high fish meal inclusion

    No full text
    This study examined the modulatory effect of two commercial feed additives, Lumance (R) (0.2% and 0.5%) and Novigest (R) (0.4%), on the growth and microscopic structure of the intestine and liver of juvenile gilthead sea bream (Sparus aurata), when added to high (HFM-0) and low fish meal (LFM-0) diets. Lumance (R) was added only in the HFM-0 diet (HFM-0.2 and HFM-0.5), while a mixture of the two additives was used in the LFM-0 diet (LFM-0.6: 0.2% Lumance (R) + 0.4% Novigest (R) and LFM.0.9: 0.5% Lumance (R) + 0.4% Novigest (R)). Fish fed the HFM diets exhibited the highest overall growth, and significant differences were recorded in the specific growth rate (SGR), daily growth index (DGI), feed conversion ratio (FCR) and thermal growth coefficient (TGC), between the HFM and LFM dietary treatment groups. Supplementation of the additives had no effect on the growth performance in either of these groups. The analysis of the intestinal histomorphometric measurements showed signs of intestinal inflammation in the fish fed the LFM-0 diet. The addition of the two additives exhibited some modulatory effects, particularly increased intestinal villi length and lamina propria width in the mid-intestine. An increased number of intraepithelial cells and mucus production was also observed, as well as a decrease in hepatic vacuolation in the LFM-0.6 and LFM-0.9 groups, but not at a statistically significant level
    corecore