152 research outputs found

    Actin dynamics regulate proteasome homeostasis

    Get PDF

    Actin dynamicsĀ inĀ protein homeostasis

    Get PDF
    Cell homeostasis is maintained in all organisms by the constant adjustment of cell constituents and organisation to account for environmental context. Fine-tuning of the optimal balance of proteins for the conditions, or protein homeostasis, is critical to maintaining cell homeostasis. Actin, a major constituent of the cytoskeleton, forms many different structures which are acutely sensitive to the cell environment. Furthermore, actin structures interact with and are critically important for the function and regulation of multiple factors involved with mRNA and protein production and degradation, and protein regulation. Altogether, actin is a key, if often overlooked, regulator of protein homeostasis across eukaryotes. In this review, we highlight these roles and how they are altered following cell stress, from mRNA transcription to protein degradation

    Proteasome assembly chaperone translation upon stress requires Ede1 phase separation at the plasma membrane

    Get PDF
    Proteome adaptation is key to cells surviving stresses. Increased translation of proteasome assembly chaperones (PACs) is critical for increasing proteasome assembly and cell degradative capacity. The endocytic protein Ede1 recruits PAC mRNA to cortical actin patches in Saccharomyces cerevisiae for translation upon stress. We show, through genetic and pharmacological studies, that this is mediated by the capacity of Ede1 to phase separate. PAC expression is maintained when we exchange the phase separating domains from Ede1 for those of unrelated proteins. Without these phase separating regions, PAC expression is not induced upon stress, preventing increased proteasome assembly, causing cell death. This work identifies a mechanism underpinning Ede1-mediated increased translation of specific mRNAs at a time when general translation is repressed

    Actin remodelling controls proteasome homeostasis upon stress

    Get PDF
    When cells are stressed, bulk translation is often downregulated to reduce energy demands while stress-response proteins are simultaneously upregulated. To promote proteasome assembly and activity and maintain cell viability upon TORC1 inhibition, 19S regulatory-particle assembly chaperones (RPACs) are selectively translated. However, the molecular mechanism for such selective translational upregulation is unclear. Here, using yeast, we discover that remodelling of the actin cytoskeleton is important for RPAC translation following TORC1 inhibition. mRNA of the RPAC ADC17 is associated with actin cables and is enriched at cortical actin patches under stress, dependent upon the early endocytic protein Ede1. ede1āˆ† cells failed to induce RPACs and proteasome assembly upon TORC1 inhibition. Conversely, artificially tethering ADC17 mRNA to cortical actin patches enhanced its translation upon stress. These findings suggest that actin-dense structures such as cortical actin patches may serve as a translation platform for a subset of stress-induced mRNAs including regulators of proteasome homeostasis
    • ā€¦
    corecore