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Actin dynamics regulate protein homeostasis
Thomas D. Williams, Roberta Cacioppo, Houjiang Zhou, Adrien Rousseau

(tswilliams@dundee.ac.uk ; arousseau@dundee.ac.uk)
Cells must maintain the right amounts of functional protein at all times. Damaged proteins must be degraded. Certain stresses inhibit TORC1, increasing 

proteasome assembly by translational upregulation of regulatory particle assembly chaperones (RPACs). Using yeast, we identify a protein, Ede1, 
associated with translating RPAC mRNA following TORC1 inhibition. Following rapamycin/latrunculin-B treatment, cellular actin depolarises and RPAC 

mRNA localises more to actin patches, dependent on Ede1. Together with TORC1 inhibition, this shift is required for RPAC translation.

Figure 1: A) Protein homeostasis is 
maintained by the balance of protein 
production and degradation. B) 
Assembled proteasomes recognise 
proteins to be degraded through the 
regulatory particles (RP) C) Yeast 
proteasome asembly is stimulated 
through increased translation of pro-
teasome assembly chaperones when 
TORC1 is inhibited.
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Figure 2: A) FGH17 reporter construct used in B. B) Workflow for enrichment of proteins associated with 
translating FGH17 mRNA. Nascent chain-ribosome-mRNA-regulatory protein complexes were immuno-
precipitated following rapamycin treatment. mRNA-bound proteins were released by RNAse digestion and 
identified by mass spectrometry. C) Ede1 and Cup1 were identified as potential Adc17 regulators.
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Figure 3: A) Ede1Δ cells do not increase assembly chaperones after rapa-
mycin treatment. B) This results in no proteasome activity increase, viewed 
using a fluorogenic peptide on a native protein gel. C) Ede1 transiently 
interacts with Adc17 mRNA.
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Figure 7: A) Unstressed yeast cells are polarised with actin 
patches concentrated in the bud. B) Rapamycin, causes actin 
depolarisation of WT cells, as does Latrunculin-B treatment. This 
causes bright actin patches to be relocalised throughout the cell 
Quantified in (C). D) Latrunculin-B/Rapamycin both cause relo-
calisation of mRNA to actin patches in WT, but not Ede1Δ  cells. 

Figure 4: A) Scheme for recruiting Adc17 mRNA to certain proteins 
using a nanobody-GFP tag. B) PP7-GFP is recruited to Ede1-tdi-
mer2-nbGFP (arrows). C) Adc17 translation is increased following 
rapamycin treatment when Adc17 mRNA is recruited to Ede1. 
Translation of Nas6, which is not recruited, is unaffected.
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Figure 8: A) The actin depolarising drug 
LatB induces RPAC expression following 
Lat-B treatment in WT, Sla1Δ and Vrp1Δ 
cells, but not Ede1Δ cells. B) Proteasome 
activity increase following Lat-B treatment is 
similar to rapamycin treatment in WT cells.

Thanks to the members of the Rousseau lab, past and present, for their helpful advice, the Dundee Imaging Facility for help performing microscopy, the MRC for funding this work and the MS for funding my attendance. The nanobody-GFP sequence was a kind gift from the Sapkota lab.
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Figure 5: A) Clathrin mediated endocytosis overview. Ede1 is an early 
endocytic protein, so we screened endocytic mutants for rapamycin 
induced RPAC translation and proteasome assembly defects. B) 2 mu-
tants, Sla1Δ and Vrp1Δ, were identified. C) Sla1 and Vrp1 recruit actin 
nucleators for actin patch nucleation.
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Figure 6: A) Endogenously tagged Adc17 
mRNA localises to actin cables (white arrows) 
and patches (yellow arrows) in fixed cells. 
Z-projection shown. B) Association with actin 
patches increses after rapamycin treatment, 
when Adc17 protein is increasing on western 
blot (C).
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