812 research outputs found

    Universal scaling in transport out of equilibrium through a single quantum dot using the noncrossing approximation

    Full text link
    The universal scaling behavior is studied for nonequilibrium transport through a quantum dot. To describe the dot we use the standard Anderson impurity model and use the non-equilibrium non-crossing approximation in the limit of infinite Coulomb repulsion. After solving de hamiltonian, we calculate the conductance through the system as a function of temperature TT and bias voltage VV in the Kondo and in the mixed valent regime. We obtain a good scaling function in both regimes. In particular, in the mixed valent regime, we find excellent agreement with recent experiments and previous theoretical works.Comment: 6 pages, 5 figures, Accepted Physical Review

    Quantum Transport Through a Stretched Spin--1 Molecule

    Full text link
    We analyze the electronic transport through a model spin-1 molecule as a function of temperature, magnetic field and bias voltage. We consider the effect of magnetic anisotropy, which can be generated experimentally by stretching the molecule. In the experimentally relevant regime the conductance of the unstretched molecule reaches the unitary limit of the underscreened spin- 1 Kondo effect at low temperatures. The magnetic anisotropy generates an antiferromagnetic coupling between the remaining spin 1/2 and a singular density of quasiparticles, producing a second Kondo effect and a reduced conductance. The results explain recent measurements in spin-1 molecules [Science 328 1370 (2010)].Comment: 5 pages, 3 figures, minor changes, accepted for publication in EP

    Overcoming loss of contrast in atom interferometry due to gravity gradients

    Get PDF
    Long-time atom interferometry is instrumental to various high-precision measurements of fundamental physical properties, including tests of the equivalence principle. Due to rotations and gravity gradients, the classical trajectories characterizing the motion of the wave packets for the two branches of the interferometer do not close in phase space, an effect which increases significantly with the interferometer time. The relative displacement between the interfering wave packets in such open interferometers leads to a fringe pattern in the density profile at each exit port and a loss of contrast in the oscillations of the integrated particle number as a function of the phase shift. Paying particular attention to gravity gradients, we present a simple mitigation strategy involving small changes in the timing of the laser pulses which is very easy to implement. A useful representation-free description of the state evolution in an atom interferometer is introduced and employed to analyze the loss of contrast and mitigation strategy in the general case. (As a by-product, a remarkably compact derivation of the phase-shift in a general light-pulse atom interferometer is provided.) Furthermore, exact results are obtained for (pure and mixed) Gaussian states which allow a simple interpretation in terms of the alignment of Wigner functions in phase-space. Analytical results are also obtained for expanding Bose-Einstein condensates within the time-dependent Thomas-Fermi approximation. Finally, a combined strategy for rotations and nonaligned gravity gradients is considered as well.Comment: 14+7 pages including appendices, 9 figures; v2 minor changes, matches published versio

    How far can Tarzan jump?

    Full text link
    The tree-based rope swing is a popular recreation facility, often installed in outdoor areas, giving pleasure to thrill-seekers. In the setting, one drops down from a high platform, hanging from a rope, then swings at a great speed like "Tarzan", and finally jumps ahead to land on the ground. The question now arises: How far can Tarzan jump by the swing? In this article, I present an introductory analysis of the Tarzan swing mechanics, a big pendulum-like swing with Tarzan himself attached as weight. The analysis enables determination of how farther forward Tarzan can jump using a given swing apparatus. The discussion is based on elementary mechanics and, therefore, expected to provide rich opportunities for investigations using analytic and numerical methods.Comment: 8 pages, 4 figure

    Nonequilibrium transport through magnetic vibrating molecules

    Get PDF
    We calculate the nonequilibrium conductance through a molecule or a quantum dot in which the occupation of the relevant electronic level is coupled with intensity λ\lambda to a phonon mode, and also to two conducting leads. The system is described by the Anderson-Holstein Hamiltonian. We solve the problem using the Keldysh formalism and the non-crossing approximation (NCA) for both, the electron-electron and the electron-phonon interactions. We obtain a moderate decrease of the Kondo temperature TKT_K with λ\lambda for fixed renormalized energy of the localized level Ed~\tilde{E_d}. The meaning and value of Ed~\tilde{E_d} are discussed. The spectral density of localized electrons shows in addition to the Kondo peak of width 2TK2 T_K, satellites of this peak shifted by multiples of the phonon frequency ω0 \omega_0. The nonequilibrium conductance as a function of bias voltage VbV_b at small temperatures, also displays peaks at multiples of ω0\omega_0 in addition to the central dominant Kondo peak near Vb=0V_b=0.Comment: 11 pages, 13 figures, accepted in Phys. Rev.

    Impact of capacitance and tunneling asymmetries on Coulomb blockade edges and Kondo peaks in non-equilibrium transport through molecular quantum dots

    Get PDF
    We investigate theorerically the non-equilibrium transport through a molecular quantum dot as a function of gate and bias voltage, taking into account the typical situation in molecular electronics. In this respect, our study includes asymmetries both in the capacitances and tunneling rates to the source and drain electrodes, as well as an infinitely large charging energy on the molecule. Our calculations are based on the out-of-equilibrium Non-Crossing-Approximation (NCA), which is a reliable technique in the regime under consideration. We find that Coulomb blockade edges and Kondo peaks display strong renormalization in their width and intensity as a function of these asymmetries, and that basic expectations from Coulomb blockade theory must be taken with care in general, expecially when Kondo physics is at play. In order to help comparison of theory to experiments, we also propose a simple phenomenological model which reproduces semi-quantitatively the Coulomb blockade edges that were numerically computed from the NCA in all regimes of parameters.Comment: 9 pages, 8 figure

    Replicas of the Kondo peak due to electron-vibration interaction in molecular transport properties

    Get PDF
    The low temperature properties of single level molecular quantum dots including both, electron-electron and electron-vibration interactions, are theoretically investigated. The calculated differential conductance in the Kondo regime exhibits not only the zero bias anomaly but also side peaks located at bias voltages which coincide with multiples of the energy of vibronic mode VΩ/eV \sim \hbar\Omega/e. We obtain that the evolution with temperature of the two main satellite conductance peaks follows the corresponding one of the Kondo peak when ΩkBTK\hbar\Omega \gg k_B T_K, being TK T_K the Kondo temperature, in agreement with recent transport measurements in molecular junctions. However, we find that this is no longer valid when Ω \hbar\Omega is of the order of a few times kBTKk_B T_K.Comment: 6 pages, 4 figures. Accepted for publication in Physical Review

    Restoring the SU(4) Kondo regime in a double quantum dot system

    Full text link
    We calculate the spectral density and occupations of a system of two capacitively coupled quantum dots, each one connected to its own pair of conducting leads, in a regime of parameters in which the total coupling to the leads for each dot Γi\Gamma_i are different. The system has been used recently to perform pseudospin spectroscopy by controlling independently the voltages of the four leads. For an odd number of electrons in the system, Γ1=Γ2\Gamma_1=\Gamma_2, equal dot levels E1=E2E_1=E_2 and sufficiently large interdot repulsion U12U_{12} the system lies in the SU(4) symmetric point of spin and pseudospin degeneracy in the Kondo regime. In the more realistic case Γ1Γ2\Gamma_1 \neq \Gamma_2, pseudospin degeneracy is broken and the symmetry is reduced to SU(2). Nevertheless we find that the essential features of the SU(4) symmetric case are recovered by appropriately tuning the level difference δ=E2E1\delta=E_2-E_1. The system behaves as an SU(4) Kondo one at low energies. Our results are relevant for experiments which look for signatures of SU(4) symmetry in the Kondo regime of similar systems.Comment: 9 pages, 10 figure
    corecore