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Impact of capacitance and tunneling asymmetries on Coulomb blockade edges and Kondo
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We investigate theoretically the nonequilibrium transport through a molecular quantum dot as a function of
gate and bias voltage, taking into account the typical situation in molecular electronics. In this respect, our study
includes asymmetries both in the capacitances and tunneling rates to the source and drain electrodes, as well
as an infinitely large charging energy on the molecule. Our calculations are based on the out-of-equilibrium
noncrossing approximation (NCA), which is a reliable technique in the regime under consideration. We find
that Coulomb blockade edges and Kondo peaks display strong renormalization in their width and intensity as a
function of these asymmetries, and that basic expectations from Coulomb blockade theory must be taken with
care in general, especially when Kondo physics is at play. In order to help comparison of theory to experiments,
we also propose a simple phenomenological model which reproduces semiquantitatively the Coulomb blockade
edges that were numerically computed from the NCA in all regimes of parameters.
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I. INTRODUCTION

In the last decade, an enormous amount of research in
the field of nanoelectronics has been devoted to the study
of electronic transport through quantum dots. A seminal and
very versatile type of device is the gate-defined artificial atom
created at the two-dimensional electron gas confined in semi-
conducting heterostructures [1–4]. More recently, molecular
quantum dots [5–12] have gained an important momentum,
due to the possibility of playing with the chemistry of the
molecule, which compensates the reduced gate tunability
of these systems. In all these quantum dot setups, several
physical effects are generically observed when the system
is cooled at cryogenic temperatures: Coulomb blockade is
probably the major one, due to the large charging effects
in these nanoscopic quantum dots. In addition, more subtle
correlations show up due to the Kondo effect [13,14], which
implies a resonance at the Fermi energy in the spectral density
of the dot state, which in turn leads to an anomalous peak
in the differential conductance G(V ) = dI/dV at zero bias
voltage V .

However, important and unexpected correlation effects can
also take place in transport features at finite bias voltage. For
instance, Coulomb blockade edges were shown by Könemann
et al. [15] to present a strong width renormalization in the
situation of large tunnel asymmetries between source and drain
electrodes, that is also quite typical in molecular quantum dots
[16]. Enhancement of cotunneling features of excitation levels
(as a precursor of the Kondo effect) were also described by
Paaske et al. [17] and later widely observed. All these features
need to be incorporated in the current theoretical developments
of nonequilibrium quantum transport, which has so far mainly
focused on analyzing the main universal Kondo signatures in
G(V ) under many simplifying assumptions (such as symmetric

capacitive and tunnel coupling to the electrodes). In particular,
the experiment by Könemann et al. [15] investigated a
strongly confined semiconducting quantum dot coupled to two
conducting leads with highly asymmetric tunnel couplings,
and studied tunneling resonances at nearly opposite values
of V . While in the absence of interaction effects one expects
nearly the same intensity and width of the two resonances
(see Sec. III), the Coulomb blockade edge at positive voltage
was however nearly five times more intense and nearly two
times narrower than the peak at negative voltage. The authors
assumed that for negative voltage, the width in the spectral
density of the dot level is two times larger than for positive
voltage. This is based on the fact that the charge-transfer peak
(the one near the dot level Ed ) in the density of states of the
Anderson model is two times wider when the dot is occupied
[18,19]. However, as we shall show, the peak for negative
voltage corresponds to the intermediate-valence (IV) regime,
in which the width of the spectral density is approximately 3/2
times larger than in the empty-orbital regime. In addition, the
ratio of widths for negative and positive voltages depends also
on the asymmetries of the source and drain capacitances. Our
calculation will also be able to take into account the presence of
a Kondo resonance at small bias, which in previous Coulomb
blockade theory was clearly lacking [15].

In this paper, after a brief discussion of what is expected
in the absence of Coulomb interactions for asymmetric
coupling to the leads, we calculate the differential conductance
dI/dV in the Keldysh formalism within the noncrossing
approximation (NCA) [20,21]. The NCA reproduces well the
scaling relations with temperature T and bias voltage in the
Kondo regime [22] and was for example also successfully
used to interpret experimental results on a controlled crossover
between SU(4) and SU(2) Kondo states driven by magnetic
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field in a nanoscale Si transistor [23], as well as quantum phase
transitions involving singlet and triplet states in molecular
quantum dots [9]. It was also used recently to discuss
nonequilibrium Kondo spectroscopy in a system of double
quantum dots [24]. For asymmetric coupling to the leads,
we will also derive an analytical expression which describes
semiquantitatively the NCA results. This expression is used to
interpret the experiments of Könemann et al. [15] providing
a good agreement, and could be used for further studies of
molecular systems.

The paper is organized as follows. In Sec. II we explain
our main assumptions, and present the Hamiltonian and the
equation describing the current in the presence of a finite
bias. In Sec. III we compute for comparison the differential
conductance G(V ) in the absence of Coulomb interaction.
Section IV contains the NCA results for the nonlinear
conductance, and presents an analysis of the positions and
widths of the peaks displayed in G(V ) for different ex-
perimentally relevant conditions. In Sec. V we discuss the
experiment of Könemann et al., and end up in Sec. VI with a
summary.

II. MODEL AND ASSUMPTIONS

We consider either a single molecule or a small semicon-
ducting quantum dot coupled to two conducting leads. For
molecules or small dots, the separation between the levels δ

is much larger than the coupling to the leads �ν defined
below and we can include a single localized level of the dot in
the model. This reduces the heating effects always present in
small devices [25–27], because inelastic cotunneling processes
involving excitons in the dot [25,26] are inhibited. In fact,
for example comparison between theory and experiment for a
spin-1 Kondo effect in a molecule indicates that an equilibrium
temperature is well established at very low temperatures [7].
However, the regime of large voltage drop is in general
more difficult to address, and important heating could indeed
take place. Including phonons and thermalization effects is
still an open problem in the presence of Kondo correlations
to the best of our knowledge. Nevertheless, our study has
mainly focused on regimes where the molecule is in strong
contact with one of the two leads, which makes it in a good
equilibrium.

We neglect here the effects of phonons which are important
in large grains [26] and in molecules [28–31]. These effects
can be incorporated in our NCA formalism [32], and their
main manifestations are a narrowing of the peaks due to
renormalization of the hybridization and the Kondo tempera-
ture, and the appearance of small replicas of the peaks in the
conductance discussed here shifted at multiples of the phonon
frequencies.

We therefore consider the one-level Anderson impurity
model with infinite on-site repulsion U , an assumption that
is realistic for most molecular quantum dots, but also well
obeyed for very small semiconducting devices in the vicinity
of a charge-degeneracy point. The impurity states thus involve
a singlet configuration |s〉 together with a spin doublet |σ 〉
(σ = ↑ or ↓) corresponding to one additional electron (or
hole) in the dot, taking this particle from the left (L) or
right (R) conducting leads to which the dot is connected. The

Hamiltonian thus reads

H =
∑

σ

Ed |σ 〉〈σ | +
∑
νkσ

ενkc
†
νkσ cνkσ

+
∑
νkσ

(
V ν

k |σ 〉〈s|cνkσ + H.c.
)
, (1)

where the constraint |s〉〈s| + ∑
σ |σ 〉〈σ | = 1 is imposed. Here

c
†
νkσ create conduction states in the lead ν with spin σ

and wave vector k. The tunnel couplings of the quantum
dot to the leads are �ν = π

∑
k |V ν

k |2δ(ω − ενk), assumed
independent of energy ω, and we define the total hybridization
� = �L + �R . We take the sign of the bias voltage in such a
way that μL − μR = eV , where μν is the chemical potential
of lead ν. Note that the interchange of right and left leads
or electrons by holes is equivalent to a change of sign of
V . We take the arbitrary origin of energies at μR = 0. The
capacitance effects modify the energy necessary to add an
electron to the dot with the lever arm parameter α (which
depends on the source, drain, and gate capacitances) [15,16],
defined as

Ed = E0
d + αeV, (2)

where 0 � α � 1, and e is the electron charge (taken positive).
For the situation of symmetric voltage drop that is usually
considered, α is often taken near 1/2, but this may not be the
case in many experimental setups.

We obtain the conductance G = dI/dV differentiating the
current I (numerically from NCA results), which is given
by [33]

I = C

∫
dωρ(ω,V,Ed )[fL(ω) − fR(ω)],

(3)
C = 8πe�L�R

h�
,

where fν(ω) = f (ω − μν) is the Fermi distribution in each
lead, with f (ω) = 1/(eω/kT + 1), and ρ(ω,V,Ed ) is the
nonequilibrium (voltage-dependent) spectral density of the
impurity level.

III. NONINTERACTING RESONANT-LEVEL MODEL

Before discussing in more detail the complex effects of
Coulomb interactions, we present in this section a simplified
model that sheds light onto the expected behavior of the
differential conductance G(V ). The first assumption that we
make in this section is that the tunnel couplings to the leads
are very asymmetric. This hypothesis is realistic for molecular
quantum dots and also in the experiment of Könemann et al.
in Ref. [15]. We make here the choice �R � �L, so that
the system is in equilibrium with the right lead and the
explicit dependence on the voltage of the spectral density ρ(ω)
disappears [the dependence of ρ(ω) with V through Ed given
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by Eq. (2) remains]. Then one has

ρ(ω,V,Ed ) � ρR(ω,Ed ), (4)

where ρR(ω,Ed ) is the spectral density of the impurity states
in equilibrium with the right lead, for a dot energy given by
Eq. (2). Using Eqs. (2)–(4), one obtains at T = 0

G(V ) = CeρR

(
eV,E0

d + αeV
)

+αCe

∫ eV

0
dω

∂ρR

(
ω,E0

d + αeV
)

∂Ed

. (5)

In the limit of asymmetric capacitances α → 0, only the
first term survives and G(V ) is just a map of the spectral
density ρR(ω,E0

d ), as is usual with experiments with a scanning
tunneling microscope (STM). Therefore, in this limit, G(V )
has a single peak located at V = E0

d/e (the charge-transfer
peak), and no peak for the opposite bias voltage. In addition, a
Kondo peak at V = 0 can show up in the presence of Coulomb
interactions, if −E0

d � �.
The main assumption that we make in this section is to take

a noninteracting resonant level spectral density of width 2� at
half maximum, ρR(ω,Ed ) � ρ0(ω − Ed ), with

ρ0(ω − Ed ) = �/π

(ω − Ed )2 + �2
. (6)

This is a crude approximation which is certainly not valid in
the presence of interactions (it misses the important Kondo
anomaly), but it can describe qualitatively the position and
width of the Coulomb peaks in G(V ) derived from the
charge-transfer peak in the spectral density of the dot states,
which can be renormalized from bare values by the interaction,
as we discuss in Sec. IV B 2. Assuming, as in Eq. (6), that
∂ρR/∂Ed = −∂ρR/∂ω (but not ρR = ρ0 yet), the second term
of Eq. (5) can be easily evaluated and one obtains

G(V ) � Ce[(1 − α)ρR(eV,Ed ) + αρR(0,Ed )], (7)

noting that Ed displays an explicit dependence upon the
voltage from Eq. (2). While the assumption made above
for the derivatives of the current is not exactly true (even
in equilibrium) because of the dependence of the weight
and width of the peaks with Ed , this simple expression
reflects a general feature of the expected Coulomb peaks,
in connection to the charge-transfer peak of the equilibrium
spectral density ρR . Indeed, now G(V ) displays two finite bias
peaks, one that is similar to the STM case and is located at
voltage eV = Ed [namely eV = E0

d/(1 − α)], and a second
“intermediate-valence” (IV) peak at an opposite voltage value
such that Ed = E0

d + αeV = 0. In this latter case, the impurity
experiences indeed maximal charge fluctuations because the
level is located exactly on-resonance, and thus one can expect
a different width renormalization than for the STM peak, due
to the different influence of the Coulomb interaction, as we
will demonstrate later on. For positive E0

d (corresponding
to a vanishing charge in the dot, also called the empty
orbital regime), the STM peak lies at positive bias and
the IV peak is located at negative bias, and conversely for
negative E0

d (corresponding to a spin-degenerate odd charge
in the dot, also called the local-moment regime). Thus, if
ρR = ρ0 is assumed (which is valid only in the absence of
Coulomb interaction), the conductance G(V ) displays two

peaks as a function of voltage: (i) an “STM-like” peak at
V = E0

d/[(1 − α)e] of width 2�/[(1 − α)e] and maximum
intensity (1 − α)eC/�; (ii) an IV peak at V = −E0

d/(αe) of
width 2�/(αe) and maximum intensity αeC/�. Therefore,
in the absence of Coulomb interactions, the amplitude and
width renormalizations are related, and cannot reproduce the
experimental observations made in Ref. [15]. We now turn to a
full microscopic calculation of the problem, without recourse
to the many assumptions made above, that incorporates the
correct nature of the Coulomb blockade edges and Kondo
resonances for all parameters in the device.

IV. NCA RESULTS FOR THE INTERACTING MODEL

A. The equilibrium spectral density

We consider now Hamiltonian (1) in its full complex-
ity for the case of a finite bias voltage. The noncrossing
approximation (NCA) has proved in the past an excellent
technique to deal with large Coulomb interactions, and can be
extended to the present nonequilibrium situation. In order to
gain intuition, we first focus on the zero bias (V = 0) spectral
density of the localized level, which is shown on Fig. 1 for
low temperatures and three values of the dot energy level Ed ,
corresponding to the empty-orbital (Ed = 4�), local-moment
(Ed = −4�), and mixed-valence (Ed ∼ 0) regimes [34]. For
positive Ed the result is very similar to the noninteracting
resonant level prediction, Eq. (6), with a spectral width 2�,
except for the fact that the position of the peak is slightly shifted
to higher energy Eeff

d = 4.72�. This energy shift Eeff
d − Ed

is in very good agreement with the Haldane shift [35]
(�/π )ln(D/�) = 0.733� for the half bandwidth D = 10�

that we have used in the calculations. This is expected because
the NCA incorporates naturally the lowest order perturbative
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FIG. 1. (Color online) Equilibrium (V = 0) spectral density of
the localized state for the infinite-interaction Anderson model in the
empty-orbital regime (dashed line; Ed = 4�, T = 0.01�), in the
intermediate-valence (IV) regime (dash-dotted line; Ed = −0.733�,
T = �) [34], and in the local-moment regime (full line; Ed = −4�,
T = 0.01�) that shows an additional Kondo feature at low energy.
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terms of the development in the hybridization V ν
k . Note that

the small spike at the Fermi energy ω = 0 is an artifact of the
NCA in the empty-orbital regime.

In the local-moment regime at negative Ed , the charge-
transfer peak is nearly two times wider due to the underlying
extra spin degeneracy, as was discussed in the introduction and
in previous works [18,19], and the NCA correctly reproduces
this behavior. The total intensity is also reduced by correlation
effects, as discussed phenomenologically in Sec. IV B 2, and
the position of the peak is also shifted to higher energies. More
importantly, the screening of the spin-degenerate states leads
to a Kondo peak at the Fermi level, a nontrivial effect that the
NCA is able to describe properly.

Finally, the density of states for the mixed-valence situation
(Eeff

d = 0) shows a peak centered at the Fermi level as
expected, with a width of about 3� that interpolates between
the widths found in the empty-orbital and local-moment
regimes. The temperature in this calculation has been increased
to avoid a shortcoming of the NCA [34].

Regarding the conductance G(V ), these results anticipate
similarities and differences with the naive expectations based
on the noninteracting resonant level model discussed at the
end of the previous section (apart from the obvious lack of
Kondo resonance in the latter model). A minor point is that E0

d

should be replaced by an effective level E
0,eff
d , which includes

the Haldane shift. Based on Fig. 1 and Eq. (7) the width
of the STM-like peak in the empty-orbital regime should be
2�/[(1 − α)e], thus 4� at α = 1/2 for a symmetric voltage
drop (as for the noninteracting resonant level model). However,
the width of the STM peak in the local-moment regime should
rather be 4�/[(1 − α)e], thus 8� at α = 1/2. More subtly, the
IV peak (located at opposite voltage to the STM peak) should
have the same width for the empty-orbital and local-moment
regimes, namely 3�/[(1 − α)e], thus 6� at α = 1/2. These
general trends, that we will now examine microscopically
from full NCA calculations of the conductance, show that
the experimental analysis of the width of Coulomb blockade
peak must be done with care.

B. Conductance for asymmetric tunnel coupling to the leads

1. Numerical NCA results

In this subsection, we calculate the conductance using the
nonequilibrium formalism within the noncrossing approxima-
tion (NCA) [20,21] for a large choice of parameters. Details on
the technique are given for example in Ref. [36]. We choose
here asymmetric tunnel coupling to the leads �R = 60�L,
and set the reference energy scale as � = �L + �R = 1, with
a temperature T = 0.01 and a half bandwidth of the leads
D = 10. Owing to the large ratio �R/�L � 1, the impurity
is effectively in equilibrium with the right lead, although
the calculations were in practice performed using the full
out-of-equilibrium NCA.

In Fig. 2 we show G(V ) in units of the conductance
quantum G0 = 2e2/h for positive E0

d (empty-orbital regime)
and several values of capacitance asymmetries α. The small
spike at V = 0 is again an artifact of the NCA and should
be disregarded. For symmetric voltage drop, α = 1/2, the
discussion of Sec. III based on the noninteracting resonant
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FIG. 2. (Color online) Finite bias differential conductance G(V )
in the empty-orbital regime E0

d = 4� = 4 for several values of the
capacitance ratio α = 1/2,1/3,1/4 defined according to Eq. (2),
and with a hybridization ratio �R/�L = 60 (the impurity is here
in equilibrium with the right lead).

level predicts two peaks of equal width 4� and equal
height eC/(2�) at eV = ±2E

0,eff
d ≈ 9.4. However, the more

refined analysis of Sec. IV A, based on the general features
of the interacting spectral density, predicts different width
renormalization: a width 4� for the STM peak, and a width
6� for the IV peak. These trends are well described by the full
NCA calculation shown in Fig. 2. However, the conductance
G = dI/dV is not directly given by the spectral density, but
the dependencies of its effective width and weight with Ed

affect its shape [second term of Eq. (5)]. This is particularly
important for the IV peak, for which these dependencies
are larger. This will be discussed in more detail in the next
subsection. The width of the IV peak within the NCA is about
20% larger than 6�. This can be due to the above mentioned
effects or to the limitations of the NCA at low temperatures
in the IV regime. In any case, our results demonstrate that the
STM and IV peaks are generically asymmetrical, and that their
widths depend sensitively on the charge state present on the
quantum dot.

As α decreases, the tendencies predicted by the simple
analysis of Sec. III remain qualitatively valid. The position of
the STM peak tends to E0

d and its width to 2� in the limit
α → 0. In contrast, the IV peak broadens enormously and
moves to more negative values of V when the capacitances
become very asymmetric.

In Fig. 3 we show the results for the local-moment regime at
negative E0

d . In this case, both peaks are much broader than the
predictions of the naive expectations based on a noninteracting
resonant-level spectral density. Indeed, the STM peak now
lying at negative voltage shows strong interaction effects
(already witnessed in the spectral density in Fig. 1) that make
it twice broader than without interactions (the width is 8� for
symmetric voltage drop α = 1/2). The IV peak, now located
at positive bias voltage, displays again a width that is about
3/2 wider than the simple expectations outlined at the end of
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FIG. 3. (Color online) Finite bias differential conductance G(V )
in the local-moment regime E0

d = −4� = −4 for several values of
the capacitance ratio α = 1/2,1/3,1/4 defined according to Eq. (2),
and with a hybridization ratio �R/�L = 60.

Sec. III, due to combined charge fluctuations and Coulomb
effects (the width is 6� for α = 1/2). The IV peak is also
shifted to the left, since for α = 1/2 one would expect it
to lie at eV = 2E

0,eff
d ≈ 6.5�, while it is located at 5.7�.

While naively one would expect a ratio of maxima inversely
proportional to the width, the intensity of the STM peak is
smaller than expected, especially for α = 1/2. This further
correlation effect is discussed in the next subsection where
we present a more refined analytical approach. Again, as
α decreases, the width and intensity of both peaks evolve
in agreement with the expectations of the noninteracting
resonant-level model.

As expected, the most drastic difference from the noninter-
acting resonant-level model for negative E0

d is the appearance
of the Kondo peak at V = 0. Note that its main features are
independent of α, which will be discussed in Sec. IV C 2. We
now turn to a physical interpretation of the numerical NCA
result.

2. Phenomenological approach

The main reason for the failure of the noninteracting
resonant-level model to account for Coulomb blockade peaks
at asymmetric tunnel coupling to the leads is that the correct
width and weight of the peak in the impurity level spectral
density ρ(ω) both depend in a nontrivial way on the occupancy,
as discussed in Sec. IV A. One of the simplest ways to modelize
this effect is the alloy analogy approach to periodic Anderson
models, in which the electrons with spin down are frozen to
calculate the dynamics of electrons with spin up and vice
versa [37,38]. This approach is also related to the so-called
Hubbard-III approximation [39], in which the weight of the
charge-transfer peak near Ed for spin σ (or the lower Hubbard
band in a Hubbard model) is proportional to the number of
unoccupied states with the opposite spin, 1 − 〈n−σ 〉.

To correct the width inconsistency in the noninteracting
resonant-level model, we have fitted the width of the NCA

peak as a function of Ed at a temperature T = 2� (such that
the Kondo peak is absent and the width of the IV peak is well
behaved [34]), with other parameters taken as in Sec. IV B 1.
For simplicity, in this section and in Sec. V, we replace the
notation Eeff

d by Ed , incorporating the Haldane shift in the
latter. From this, we obtain that the effective half-width at half
maximum can be approximated as

�eff

�
= 3

2
− 1

2
tanh

(
Ed

2.77�

)
. (8)

This simple formula nicely interpolates between the empty-
orbital case (�eff = � for Ed � �) and the local-moment
regime (�eff = 2� for −Ed � −�), passing through the
mixed-valence regime [�eff = (3/2)� for |Ed | � �].

The above discussion suggests that a better description of
the single peak in the equilibrium local density of state can be
obtained using the improved formula:

ρR(ω,Ed ) = (1 − 〈nσ 〉)�eff/π

(ω − Ed )2 + �2
eff

, (9)

where 〈nσ 〉 = ∫
dωρR(ω)fR(ω) is the occupation of the dot

for a given spin, independent of the spin in the absence of an
applied magnetic field. Integration gives 〈nσ 〉 in terms of the
digamma function ψ(x):

〈nσ 〉 = 1/2 − 
R

3/2 − 
R

,

(10)


ν = 1

π
Imψ

[
1

2
+ �eff + i(Ed − μν)

2πT

]
.

Replacing then Eq. (9) in Eq. (3) gives the current:

I = C(1 − 〈nσ 〉)(
R − 
L). (11)

Finally differentiating this expression, one obtains an analyt-
ical although lengthy expression for the differential conduc-
tance G(V ), which we do not reproduce here. At T = 0, G(V )
contains two terms which have the form of those included in
Eq. (7), plus some additional terms due to the dependence
of �eff and 〈ndσ 〉 with respect to Ed . These additional terms
affect the IV peak, for which the variation of �eff and 〈ndσ 〉 is
significant.

In Fig. 4 we compare the conductance G(V ) obtained
through this phenomenological approach to the full NCA result
in the empty orbital case E0

d = 4� (note that the Haldane
shift is included by hand in the level position within the
phenomenological approach). We remind the reader that for
α = 1/2, the noninteracting resonant-level model predicts a
symmetric G(V ) = G(−V ) conductance curve, which turns
out to be incorrect in the presence of strong Coulomb interac-
tion. The phenomenological approach is thus a considerable
improvement for the IV peak at negative voltage, although
some quantitative discrepancies remain. In particular, the
analytical expression gives an intermediate-valence peak a
little bit narrower and shifted towards V = 0, but the general
trends are well reproduced by the simple approach. In addition,
this discrepancy might be due to limitations of the NCA at low
temperatures in this regime.

In the local-moment regime for negative E0
d , as shown in

Fig. 5, the comparison is less satisfactory. The Kondo peak is
obviously missing in the phenomenological approach and the

035404-5



A. A. ALIGIA, P. ROURA-BAS, AND SERGE FLORENS PHYSICAL REVIEW B 92, 035404 (2015)

-20 -10 0 10 20
eV

0

0.01

0.02

0.03

0.04

0.05
G

/G
0

Ed = +4 + eV/2
Ed = +4 + eV/4

IV peak

STM peak

FIG. 4. (Color online) Differential conductance in the empty-
orbital regime E0

d = 4� = 4, for asymmetric tunnel couplings
(�R = 60�L), low temperature T = 0.01�, and two values of the
capacitance ratio α = 1/2,1/4. Full lines are the NCA simulations,
and dashed lines are the results from the phenomenological approach.

positions of the Coulomb peaks show also some deviations,
particularly for the IV peak now located at positive V . Nev-
ertheless, the intensities and the widths (which are larger than
those predicted by the noninteracting resonant-level model)
are semiquantitatively reproduced. The small discrepancy in
the position of the STM peak at negative V might be due to
some dependence with Ed of the Haldane shift, being smaller
for negative Ed . Having clarified the physics at play in the
asymmetric situation, which simplifies because the system
is in equilibrium with a single lead, we now consider the
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FIG. 5. (Color online) Differential conductance in the local-
moment regime E0

d = −4� = −4, with the same parameters as in
Fig. 4. Full lines are the NCA simulations, and dashed lines are the
results from the phenomenological approach.

problem in is full complexity for the regime of symmetric
tunnel couplings.

C. Conductance for symmetric tunnel coupling to the leads

1. Numerical NCA results

For symmetric tunnel coupling to the leads, an approxima-
tion like Eq. (4), which would permit us to reduce the problem
to the calculation of the spectral density at equilibrium,
is no longer possible. In Fig. 6 we show the results of
the nonequilibrium NCA calculation for symmetric tunnel
barriers, �L = �R = �/2, and parameters similar to those
of the experiment by Könemann et al. [15], but with negative
E0

d . In contrast to the results of Sec. IV B 1, the symmetry now
imposes that G(V ) = G(−V ) for �L = �R and α = 1/2.

While one would expect that the noninteracting resonant-
level model is meaningless in this nonequilibrium interacting
case, the symmetric coupling to the leads “blurs” in the
conductance the asymmetry due to correlation effects. The
simplest noninteracting resonant-level model with renormal-
ized parameters is indeed able to reproduce the Coulomb
blockade peaks obtained with the NCA (of course the Kondo
anomaly is not captured). Except for the small modification
of the α value, which is hard to justify, the changes in
the other parameters of the model are expected: a width
4.2 meV nearly two times larger than expected (2.30 meV)
because of correlation effects, an effective Ed shifted upwards
due to renormalization effects (the Haldane shift [35] is
1.04 meV for the half bandwidth D = 20 meV used in the
figure), and smaller intensity also due to correlation effects
(weight proportional to 1 − 〈n−σ 〉). We now turn to a detailed
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FIG. 6. (Color online) Differential conductance at symmetric
tunnel couplings, �L = �R , for parameters close to the experimental
measurement of Könemann et al. [15], namely � = 1.15 meV,
E0

d = −4.5 meV, T = 0.014 meV, and α = 0.425. The full line is the
nonequilibrium NCA calculation, while the dashed line corresponds
to a fit to the noninteracting resonant-level model with renormalized
parameters �eff = 2.1 meV, E0

d = −3.44 meV, α = 0.45, and a scale
reduction factor 0.355.
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description of the Kondo resonance for a large range of
parameters.

2. On the width of the nonequilibrium Kondo peak

In this section, we study the relation between the width of
the low bias Kondo resonance in the differential conductance
G(V ) (which is present for negative enough E0

d ) and the
Kondo peak in the equilibrium spectral density of the impurity
level ρ(ω). We define T G

K (resp. T
ρ

K ) as the energy scale
corresponding to half the width at half maximum of the peak in
G(V ) [resp. ρ(ω)] near V = 0 (resp. ω = 0). Both quantities
are on the order of the Kondo temperature, but differ from a
nonuniversal prefactor. Since the Kondo temperature is often
extracted experimentally from the differential conductance
curve, but theoretically the equilibrium density of states is
more standardly computed, for instance with the numerical
renormalization group (which has difficulties in grasping the
effect of finite bias voltage), we consider here systematically
the ratio T G

K /T
ρ

K , for several ratios of couplings to the
leads �R/�L, keeping � = �R + �L = 1 fixed, and also
for several values of the level position Ed . In this section
we keep Ed fixed and assume a symmetric voltage drop
μL = −μR = eV/2, as V is increased, and take the half
bandwidth D = 10. Both the differential conductance G(V )
and equilibrium density of states ρ(ω) are computed with the
NCA, the former with the nonequilibrium formalism, and the
latter at equilibrium [20,21,36]. The resulting ratio of Kondo
temperatures is shown in Table I.

It can be noticed from Table I that the ratio T G
K /T

ρ

K � 1 and
decreases towards unity when both the tunnel asymmetry ratio
R = �R/�L is increased and the impurity level position Ed is
decreased negatively, which can be understood as follows.
For large asymmetry of the tunnel coupling to the leads,
R � 1, the dot can be considered at equilibrium with the
right lead, and Eq. (4) becomes valid. Furthermore, in the
Kondo limit for fixed chemical potential μ, the Kondo peak
is insensitive to a small change in the localized level Ed ,
and remains close to the Fermi level. For |eV | � T

ρ

K this is
supported by Fermi-liquid approaches [40,41]. Thus, one can
drop the second term in Eq. (5) and G(V ) for |eV | < T

ρ

K gives
directly the spectral density of the dot state ρR(eV,E0

d ).
This effect is evident in Fig. 7, where the evolution of the
Kondo peak in conductance G(V ) with increasing asymmetry
ratio R is shown and compared to the equilibrium density of
states ρR(eV,E0

d ).

TABLE I. Ratio T G
K /T

ρ

K of the Kondo temperatures extracted
from finite bias conductance G(V ) and equilibrium density of states
ρ(ω), obtained for different values of the level energy Ed and various
asymmetry ratios �R/�L.

�R/�L Ed −2 −3 −4 −5 −6

1 1.59 1.45 1.33 1.31 1.30
2 1.50 1.19 1.078 1.09 1.08
5 1.29 1.03 1.008 1.003 ∼1
10 1.29 ∼1 ∼1 ∼1 ∼1
20 1.29 ∼1 ∼1 ∼1 ∼1
30 1.29 ∼1 ∼1 ∼1 ∼1
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πΔ
ρ(

ω
)

R=1
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R=30

FIG. 7. (Color online) Differential conductance near G(V ) (bro-
ken lines in red, corresponding to the left vertical scale), and
equilibrium spectral density of the quantum dot ρ(ω) (full line in
black, corresponding to the right vertical scale), computed for � = 1,
Ed = −4, and several tunnel asymmetry ratios R = �R/�L =
1,5,30. The coefficient A = 4�R�L/�2 is introduced to normalize
the conductance to the density of states.

V. COMPARISON WITH EXPERIMENT

In this last section, we discuss the experiment of Könemann
et al. [15]. This experiment corresponds to a value of E0

d that
is positive and very large (two orders of magnitude bigger than
�). This situation is very hard for the numerical solution of
the self-consistent NCA equations, but since the Kondo effect
does not take place, we can compare the experiment to the
phenomenological approach developed in Sec. IV B 2, which
takes into account the changes in both width and height of
the charge-transfer peak in the spectral density with the dot
level Ed . The experiment was done for highly asymmetric
tunnel coupling to the leads, so that the main assumption of
Sec. IV B 2 is fulfilled.

In the experiment, there is a peak at V = −9.7 mV with a
half-width of 76 μV and another one at V = 8.9 mV with a
half-width of 35.5 μV which is about five times more intense.
For α � 1/2 (as suggested in Ref. [15]), the noninteracting
resonant level model incorrectly predicts two peaks of equal
width and height at opposite voltages (see the end of Sec. III).
For α = 1/2, our more accurate phenomenological theory
predicts a ratio of about 3/2 between the width of the IV peak
at negative V and the STM peak at positive V , and not
a ratio of about 2. However, the fact that the positions of
the two peaks are not symmetric with respect to zero bias
shows that α is in fact different from 1/2. Using α = 0.45
to adjust the correct peak position, this provides an additional
contribution to the ratio in the peak widths. In Fig. 8 we display
our results for parameters close to the experiment. While we
are unable to reproduce exactly the intensities, positions, and
widths of both peaks, we obtain a semiquantitative agreement
with experiment. Our conductance curves can be fitted with
the sum of two Lorentzians: one located at V = −9.97 mV
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FIG. 8. Differential conductance using the phenomenological
model Eq. (11) for parameters corresponding to the experiment by
Könemann et al. [15]: � = 0.02 meV, E0

d = 4.5 meV, T = 0.01 meV,
and α = 0.45. Full (dotted) line corresponds to negative (positive)
bias voltage.

with half-width at half maximum 64 μV and peak value
1.17A, another one located at V = 8.18 mV, with half-width
at half maximum 36 μV and peak value 4.21A. In the
future, comparisons to further experimental data for molecular
quantum dots deep in the Kondo regime would be interesting,
in order to test our predictions.

VI. SUMMARY

Motivated by experiments with semiconducting and molec-
ular quantum dots [15,16], we have analyzed the complete
shape of the differential conductance G(V ) in the infinite-U
Anderson model connected to two leads, as a function of the
ratio of the potential drops between the dot and both leads, and
for various tunneling asymmetries. The simplest situation is the
one found in scanning tunneling spectroscopies, where both
the potential drop and tunneling rates are strongly asymmetric
towards the metallic surface on which a molecule is deposited.
As is well known in this situation, the conductance provides
exactly a measure of the equilibrium spectral density of the

quantum dot and displays only one Coulomb peak when volt-
age is aligned to the charge-transfer peak in the spectral density
(this peak position may contain renormalization effects). When
the impurity level is deeply negative, a local moment forms,
and the Kondo effect leads to an additional anomaly near zero
bias, both in the density of states and differential conductance.

The situation of an arbitrary ratio for the capacitance to
the source and drain is more complex (even still assuming
very asymmetric tunneling rates). We find that the Coulomb
peak position and width in this regime not only display trivial
changes expected from the modification of the capacitance
ratio, but are also corrected by many-body effects. As is
known from previous calculations [18,19] and reproduced
by our NCA results, the width of the charge-transfer peak
is about two times larger for large and negative level position
(local-moment regime) than for large and positive position
(empty-orbital regime). In addition, an extra Coulomb peak
appears at opposite voltage values to the peak found in the
STM situation, as expected from Coulomb blockade theory.
However, this peak has in general a different nature, and
relates to the intermediate-valence situation of the underlying
quantum impurity model, and displays accordingly a width
renormalization of about 3/2 compared to expectations based
on a noninteracting effective resonant-level model. All these
effects can be taken into account by a simple phenomenologi-
cal approach described in Sec. IV B 2, which is able to describe
well our numerical simulations (except for the presence of the
Kondo resonance) and agrees semiquantitatively with some
published experimental results (see Sec. V).

We also provided a general study of the Kondo temperature
extracted from the differential conductance (as typically done
in experiments), and made some precise connections to the
Kondo scale extracted theoretically from the equilibrium
spectral density. We find that the former scale can be up to
60% larger than the latter one, and that they coincide only for
asymmetric tunnel couplings deeply in the Kondo regime.

We hope that all these results will serve as guidelines for
interpreting more quantitatively experimental data obtained
from molecular quantum dots, since many-body effects can
quantitatively alter the predictions of basic Coulomb blockade
theory.
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