28 research outputs found
Complexity Matching: Restoring the Complexity of Locomotion in Older People Through Arm-in-Arm Walking
The complexity matching effect refers to a maximization of information exchange, when interacting systems share similar complexities. Additionally, interacting systems tend to attune their complexities in order to enhance their coordination. This effect has been observed in a number of synchronization experiments, and interpreted as a transfer of multifractality between systems. Finally, it has been shown that when two systems of different complexity levels interact, this transfer of multifractality operates from the most complex system to the less complex, yielding an increase of complexity in the latter. This theoretical framework inspired the present experiment that tested the possible restoration of complexity in older people. In young and healthy participants, walking is known to present 1/f fluctuations, reflecting the complexity of the locomotion system, providing walkers with both stability and adaptability. In contrast walking tends to present a more disordered dynamics in older people, and this whitening was shown to correlate with fall propensity. We hypothesized that if an aged participant walked in close synchrony with a young companion, the complexity matching effect should result in the restoration of complexity in the former. Older participants were involved in a prolonged training program of synchronized walking, with a young experimenter. Synchronization within the dyads was dominated by complexity matching. We observed a restoration of complexity in participants after 3 weeks, and this effect was persistent 2 weeks after the end of the training session. This work presents the first demonstration of a restoration of complexity in deficient systems
Impairment of gut microbial biotin metabolism and host biotin status in severe obesity: effect of biotin and prebiotic supplementation on improved metabolism
Objectives Gut microbiota is a key component in obesity and type 2 diabetes, yet mechanisms and metabolites central to this interaction remain unclear. We examined the human gut microbiome\u27s functional composition in healthy metabolic state and the most severe states of obesity and type 2 diabetes within the MetaCardis cohort. We focused on the role of B vitamins and B7/B8 biotin for regulation of host metabolic state, as these vitamins influence both microbial function and host metabolism and inflammation. Design We performed metagenomic analyses in 1545 subjects from the MetaCardis cohorts and different murine experiments, including germ-free and antibiotic treated animals, faecal microbiota transfer, bariatric surgery and supplementation with biotin and prebiotics in mice. Results Severe obesity is associated with an absolute deficiency in bacterial biotin producers and transporters, whose abundances correlate with host metabolic and inflammatory phenotypes. We found suboptimal circulating biotin levels in severe obesity and altered expression of biotin-associated genes in human adipose tissue. In mice, the absence or depletion of gut microbiota by antibiotics confirmed the microbial contribution to host biotin levels. Bariatric surgery, which improves metabolism and inflammation, associates with increased bacterial biotin producers and improved host systemic biotin in humans and mice. Finally, supplementing high-fat diet-fed mice with fructo-oligosaccharides and biotin improves not only the microbiome diversity, but also the potential of bacterial production of biotin and B vitamins, while limiting weight gain and glycaemic deterioration. Conclusion Strategies combining biotin and prebiotic supplementation could help prevent the deterioration of metabolic states in severe obesity
Imidazole propionate is increased in diabetes and associated with dietary patterns and altered microbial ecology
Microbiota-host-diet interactions contribute to the development of metabolic diseases. Imidazole propionate is a novel microbially produced metabolite from histidine, which impairs glucose metabolism. Here, we show that subjects with prediabetes and diabetes in the MetaCardis cohort from three European countries have elevated serum imidazole propionate levels. Furthermore, imidazole propionate levels were increased in subjects with low bacterial gene richness and Bacteroides 2 enterotype, which have previously been associated with obesity. The Bacteroides 2 enterotype was also associated with increased abundance of the genes involved in imidazole propionate biosynthesis from dietary histidine. Since patients and controls did not differ in their histidine dietary intake, the elevated levels of imidazole propionate in type 2 diabetes likely reflects altered microbial metabolism of histidine, rather than histidine intake per se. Thus the microbiota may contribute to type 2 diabetes by generating imidazole propionate that can modulate host inflammation and metabolism
Recommended from our members
Combinatorial, additive and dose-dependent drugâmicrobiome associations
During the transition from a healthy state to cardiometabolic disease, patients become heavily medicated, which leads to an increasingly aberrant gut microbiome and serum metabolome, and complicates biomarker discovery. Here, through integrated multi-omics analyses of 2,173 European residents from the MetaCardis cohort, we show that the explanatory power of drugs for the variability in both host and gut microbiome features exceeds that of disease. We quantify inferred effects of single medications, their combinations as well as additive effects, and show that the latter shift the metabolome and microbiome towards a healthier state, exemplified in synergistic reduction in serum atherogenic lipoproteins by statins combined with aspirin, or enrichment of intestinal Roseburia by diuretic agents combined with beta-blockers. Several antibiotics exhibit a quantitative relationship between the number of courses prescribed and progression towards a microbiome state that is associated with the severity of cardiometabolic disease. We also report a relationship between cardiometabolic drug dosage, improvement in clinical markers and microbiome composition, supporting direct drug effects. Taken together, our computational framework and resulting resources enable the disentanglement of the effects of drugs and disease on host and microbiome features in multimedicated individuals. Furthermore, the robust signatures identified using our framework provide new hypotheses for drugâhostâmicrobiome interactions in cardiometabolic disease
Biases in the Simulation and Analysis of Fractal Processes
International audienceFractal processes have recently received a growing interest, especially in the domain of rehabilitation. More precisely, the evolution of fractality with aging and disease, suggesting a loss of complexity, has inspired a number of studies that tried, for example, to entrain patients with fractal rhythms. is kind of study requires relevant methods for generating fractal signals and for assessing the fractality of the series produced by participants. In the present work, we engaged a cross validation of three methods of generation and three methods of analysis. We generated exact fractal series with the Davies-Harte (DH) algorithm, the spectral synthesis method (SSM), and the ARFIMA simulation method. e series were analyzed by detrended fluctuation analysis (DFA), power spectral density (PSD) method, and ARFIMA modeling. Results show that some methods of generation present systematic biases: DH presented a strong bias toward white noise in fBm series close to the 1/f boundary and SSM produced series with a larger variability around the expected exponent, as compared with other methods. In contrast, ARFIMA simulations provided quite accurate series, without major bias. Concerning the methods of analysis, DFA tended to systematically underestimate fBm series. In contrast, PSD yielded overestimates for fBm series. With DFA, the variability of estimates tended to increase for fGn series as they approached the 1/f boundary and reached unacceptable levels for fBm series. The highest levels of variability were produced by PSD. Finally, ARFIMA methods generated the best series and provided the most accurate and less variable estimates
Complexity matching in side-by-side walking
International audienceInterpersonal coordination represents a very common phenomenon in daily-life activities. Three theoretical frameworks have been proposed to account for synchronization processes in such situations: the information processing approach, the coordination dynamics perspective, and the complexity matching effect. On the basis of a theoretical analysis of these frameworks, we propose three statistical tests that could allow to distinguish between these theoretical hypotheses: the first one is based on multifractal analyses, the second and the third ones on cross-correlation analyses. We applied these tests on series collected in an experiment where participants were instructed to walk in synchrony. We contrasted three conditions: independent walking, side-by-side walking, and arm-in-arm walking. The results are consistent with the complexity matching hypothesis
Complexity Matching: Restoring the Complexity of Locomotion in Older People Through Arm-in-Arm Walking
International audienceThe complexity matching effect refers to a maximization of information exchange, when interacting systems share similar complexities. Additionally, interacting systems tend to attune their complexities in order to enhance their coordination. This effect has been observed in a number of synchronization experiments, and interpreted as a transfer of multifractality between systems. Finally, it has been shown that when two systems of different complexity levels interact, this transfer of multifractality operates from the most complex system to the less complex, yielding an increase of complexity in the latter. This theoretical framework inspired the present experiment that tested the possible restoration of complexity in older people. In young and healthy participants, walking is known to present 1/f fluctuations, reflecting the complexity of the locomotion system, providing walkers with both stability and adaptability. In contrast walking tends to present a more disordered dynamics in older people, and this whitening was shown to correlate with fall propensity. We hypothesized that if an aged participant walked in close synchrony with a young companion, the complexity matching effect should result in the restoration of complexity in the former. Older participants were involved in a prolonged training program of synchronized walking, with a young experimenter. Synchronization within the dyads was dominated by complexity matching. We observed a restoration of complexity in participants after 3 weeks, and this effect was persistent 2 weeks after the end of the training session. This work presents the first demonstration of a restoration of complexity in deficient systems
Restoring Walking Complexity in Older Adults Through Arm-in-Arm Walking: Were Almurad et al.âs (2018) Results an Artifact?
International audienceThe analysis of stride series revealed a loss of complexity in older people, which correlated with the falling propensity. A recent experiment evidenced an increase of walking complexity in older participants when they walked in close synchrony with a younger companion. Moreover, a prolonged experience of such synchronized walking yielded a persistent restoration of complexity. This result, however, was obtained with a unique healthy partner, and it could be related to a particular partnerâs behavior. The authorsâ aim was to replicate this important finding using a different healthy partner and to compare the results to those previously obtained. The authors successfully replicated the previous results: synchronization yielded an attraction of participantsâ complexity toward that of their partner and a restoration of complexity that persisted in two posttests, 2 and 6 weeks after the end of the training sessions. This study shows that this complexity restoration protocol can be applied successfully with another partner, and allows us to conclude that it can be generalized
Multifractal signatures of complexity matching
International audienceThe complexity matching effect supposes that synchronization between complex systems could emerge from multiple interactions across multiple scales and has been hypothesized to underlie a number of daily-life situations. Complexity matching suggests that coupled systems tend to share similar scaling properties, and this phenomenon is revealed by a statistical matching between the scaling exponents that characterize the respective behaviors of both systems. However, some recent papers suggested that this statistical matching could originate from local adjustments or corrections, rather than from a genuine complexity matching between systems. In the present paper, we propose an analysis method based on correlation between multifractal spectra, considering different ranges of time scales. We analyze several datasets collected in various situations (bimanual coordination, interpersonal coordination, and walking in synchrony with a fractal metronome). Our results show that this method is able to distinguish between situations underlain by genuine statistical matching and situations where statistical matching results from local adjustments