117 research outputs found

    Fractionalization of minimal excitations in integer quantum Hall edge channels

    Full text link
    A theoretical study of the single electron coherence properties of Lorentzian and rectangular pulses is presented. By combining bosonization and the Floquet scattering approach, the effect of interactions on a periodic source of voltage pulses is computed exactly. When such excitations are injected into one of the channels of a system of two copropagating quantum Hall edge channels, they fractionalize into pulses whose charge and shape reflects the properties of interactions. We show that the dependence of fractionalization induced electron/hole pair production in the pulses amplitude contains clear signatures of the fractionalization of the individual excitations. We propose an experimental setup combining a source of Lorentzian pulses and an Hanbury Brown and Twiss interferometer to measure interaction induced electron/hole pair production and more generally to reconstruct single electron coherence of these excitations before and after their fractionalization.Comment: 18 pages, 10 figures, 1 tabl

    Quantum capacitance and density of states of graphene

    Full text link
    We report on measurements of the quantum capacitance in graphene as a function of charge carrier density. A resonant LC-circuit giving high sensitivity to small capacitance changes is employed. The density of states, which is directly proportional to the quantum capacitance, is found to be significantly larger than zero at and around the charge neutrality point. This finding is interpreted to be a result of potential fluctuations with amplitudes of the order of 100 meV in good agreement with scanning single-electron transistor measurements on bulk graphene and transport studies on nanoribbons

    Noise dephasing in the edge states of the Integer Quantum Hall regime

    Full text link
    An electronic Mach Zehnder interferometer is used in the integer quantum hall regime at filling factor 2, to study the dephasing of the interferences. This is found to be induced by the electrical noise existing in the edge states capacitively coupled to each others. Electrical shot noise created in one channel leads to phase randomization in the other, which destroys the interference pattern. These findings are extended to the dephasing induced by thermal noise instead of shot noise: it explains the underlying mechanism responsible for the finite temperature coherence time τϕ(T)\tau_\phi(T) of the edge states at filling factor 2, measured in a recent experiment. Finally, we present here a theory of the dephasing based on Gaussian noise, which is found in excellent agreement with our experimental results.Comment: ~4 pages, 4 figure

    Photon-assisted shot noise in graphene in the Terahertz range

    Full text link
    When subjected to electromagnetic radiation, the fluctuation of the electronic current across a quantum conductor increases. This additional noise, called photon-assisted shot noise, arises from the generation and subsequent partition of electron-hole pairs in the conductor. The physics of photon-assisted shot noise has been thoroughly investigated at microwave frequencies up to 20 GHz, and its robustness suggests that it could be extended to the Terahertz (THz) range. Here, we present measurements of the quantum shot noise generated in a graphene nanoribbon subjected to a THz radiation. Our results show signatures of photon-assisted shot noise, further demonstrating that hallmark time-dependant quantum transport phenomena can be transposed to the THz range.Comment: includes supplemental materia

    Tuning decoherence with a voltage probe

    Full text link
    We present an experiment where we tune the decoherence in a quantum interferometer using one of the simplest object available in the physic of quantum conductors : an ohmic contact. For that purpose, we designed an electronic Mach-Zehnder interferometer which has one of its two arms connected to an ohmic contact through a quantum point contact. At low temperature, we observe quantum interference patterns with a visibility up to 57%. Increasing the connection between one arm of the interferometer to the floating ohmic contact, the voltage probe, reduces quantum interferences as it probes the electron trajectory. This unique experimental realization of a voltage probe works as a trivial which-path detector whose efficiency can be simply tuned by a gate voltage

    Robust quantum coherence above the Fermi sea

    Get PDF
    In this paper we present an experiment where we measured the quantum coherence of a quasiparticle injected at a well-defined energy above the Fermi sea into the edge states of the integer quantum Hall regime. Electrons are introduced in an electronic Mach-Zehnder interferometer after passing through a quantum dot that plays the role of an energy filter. Measurements show that above a threshold injection energy, the visibility of the quantum interferences is almost independent of the energy. This is true even for high energies, up to 130~μ\mueV, well above the thermal energy of the measured sample. This result is in strong contradiction with our theoretical predictions, which instead predict a continuous decrease of the interference visibility with increasing energy. This experiment raises serious questions concerning the understanding of excitations in the integer quantum Hall regime

    Intrinsic and extrinsic decay of edge magnetoplasmons in graphene

    Full text link
    We investigate intrinsic and extrinsic decay of edge magnetoplasmons (EMPs) in graphene quantum Hall (QH) systems by high-frequency electronic measurements. From EMP resonances in disk shaped graphene, we show that the dispersion relation of EMPs is nonlinear due to interactions, giving rise to intrinsic decay of EMP wavepacket. We also identify extrinsic dissipation mechanisms due to interaction with localized states in bulk graphene from the decay time of EMP wavepackets. We indicate that, owing to the unique linear and gapless band structure, EMP dissipation in graphene can be lower than that in GaAs systems.Comment: 5 page

    Finite bias visibility of the electronic Mach-Zehnder interferometer

    Full text link
    We present an original statistical method to measure the visibility of interferences in an electronic Mach-Zehnder interferometer in the presence of low frequency fluctuations. The visibility presents a single side lobe structure shown to result from a gaussian phase averaging whose variance is quadratic with the bias. To reinforce our approach and validate our statistical method, the same experiment is also realized with a stable sample. It exhibits the same visibility behavior as the fluctuating one, indicating the intrinsic character of finite bias phase averaging. In both samples, the dilution of the impinging current reduces the variance of the gaussian distribution.Comment: 4 pages, 5 figure

    A Josephson relation for fractionally charged anyons.

    Get PDF
    Anyons occur in two-dimensional electron systems as excitations with fractional charge in the topologically ordered states of the fractional quantum Hall effect (FQHE). Their dynamics are of utmost importance for topological quantum phases and possible decoherence-free quantum information approaches, but observing these dynamics experimentally is challenging. Here, we report on a dynamical property of anyons: the long-predicted Josephson relation f J = e*V/h for charges e* = e/3 and e/5, where e is the charge of the electron and h is Planck's constant. The relation manifests itself as marked signatures in the dependence of photo-assisted shot noise (PASN) on voltage V when irradiating contacts at microwaves frequency f J The validation of FQHE PASN models indicates a path toward realizing time-resolved anyon sources based on levitons
    corecore