2,983 research outputs found

    Whispering gallery modes in open quantum billiards

    Full text link
    The poles of the S-matrix and the wave functions of open 2D quantum billiards with convex boundary of different shape are calculated by the method of complex scaling. Two leads are attached to the cavities. The conductance of the cavities is calculated at energies with one, two and three open channels in each lead. Bands of overlapping resonance states appear which are localized along the convex boundary of the cavities and contribute coherently to the conductance. These bands correspond to the whispering gallery modes appearing in the classical calculations.Comment: 9 pages, 3 figures in jpg and gif forma

    Dynamics of open quantum systems

    Get PDF
    The coupling between the states of a system and the continuum into which it is embedded, induces correlations that are especially large in the short time scale. These correlations cannot be calculated by using a statistical or perturbational approach. They are, however, involved in an approach describing structure and reaction aspects in a unified manner. Such a model is the SMEC (shell model embedded in the continuum). Some characteristic results obtained from SMEC as well as some aspects of the correlations induced by the coupling to the continuum are discussed.Comment: 16 pages, 5 figure

    S-matrix theory for transmission through billiards in tight-binding approach

    Full text link
    In the tight-binding approximation we consider multi-channel transmission through a billiard coupled to leads. Following Dittes we derive the coupling matrix, the scattering matrix and the effective Hamiltonian, but take into account the energy restriction of the conductance band. The complex eigenvalues of the effective Hamiltonian define the poles of the scattering matrix. For some simple cases, we present exact values for the poles. We derive also the condition for the appearance of double poles.Comment: 29 pages, 9 figures, submitted to J. Phys. A: Math. and Ge

    Effective Hamiltonian and unitarity of the S matrix

    Full text link
    The properties of open quantum systems are described well by an effective Hamiltonian H{\cal H} that consists of two parts: the Hamiltonian HH of the closed system with discrete eigenstates and the coupling matrix WW between discrete states and continuum. The eigenvalues of H{\cal H} determine the poles of the SS matrix. The coupling matrix elements W~kcc′\tilde W_k^{cc'} between the eigenstates kk of H{\cal H} and the continuum may be very different from the coupling matrix elements Wkcc′W_k^{cc'} between the eigenstates of HH and the continuum. Due to the unitarity of the SS matrix, the \TW_k^{cc'} depend on energy in a non-trivial manner, that conflicts with the assumptions of some approaches to reactions in the overlapping regime. Explicit expressions for the wave functions of the resonance states and for their phases in the neighbourhood of, respectively, avoided level crossings in the complex plane and double poles of the SS matrix are given.Comment: 17 pages, 7 figure

    Statistical aspects of nuclear coupling to continuum

    Get PDF
    Various global characteristics of the coupling between the bound and scattering states are explicitly studied based on realistic Shell Model Embedded in the Continuum. In particular, such characteristics are related to those of the scattering ensemble. It is found that in the region of higher density of states the coupling to continuum is largely consistent with the statistical model. However, assumption of channel equivalence in the statistical model is, in general, violated

    Conductance of Open Quantum Billiards and Classical Trajectories

    Full text link
    We analyse the transport phenomena of 2D quantum billiards with convex boundary of different shape. The quantum mechanical analysis is performed by means of the poles of the S-matrix while the classical analysis is based on the motion of a free particle inside the cavity along trajectories with a different number of bounces at the boundary. The value of the conductance depends on the manner the leads are attached to the cavity. The Fourier transform of the transmission amplitudes is compared with the length of the classical paths. There is good agreement between classical and quantum mechanical results when the conductance is achieved mainly by special short-lived states such as whispering gallery modes (WGM) and bouncing ball modes (BBM). In these cases, also the localization of the wave functions agrees with the picture of the classical paths. The S-matrix is calculated classically and compared with the transmission coefficients of the quantum mechanical calculations for five modes in each lead. The number of modes coupled to the special states is effectively reduced.Comment: 19 pages, 6 figures (jpg), 2 table

    Commensurate Itinerant Antiferromagnetism in BaFe2As2: 75As-NMR Studies on a Self-Flux Grown Single Crystal

    Full text link
    We report results of 75As nuclear magnetic resonance (NMR) experiments on a self-flux grown single crystal of BaFe2As2. A first-order antiferromagnetic (AF) transition near 135 K was detected by the splitting of NMR lines, which is accompanied by simultaneous structural transition as evidenced by a sudden large change of the electric field gradient tensor at the As site. The NMR results lead almost uniquely to the stripe spin structure in the AF phase. The data of spin-lattice relaxation rate indicate development of anisotropic spin fluctuations of the stripe-type with decreasing temperature in the paramagnetic phase.Comment: 7 pages, 7 figures, accepted for publication in J. Phys. Soc. Jp

    Nonlinear acousto-electric transport in a two-dimensional electron system

    Full text link
    We study both theoretically and experimentally the nonlinear interaction between an intense surface acoustic wave and a two-dimensional electron plasma in semiconductor-piezocrystal hybrid structures. The experiments on hybrid systems exhibit strongly nonlinear acousto-electric effects. The plasma turns into moving electron stripes, the acousto-electric current reaches its maximum, and the sound absorption strongly decreases. To describe the nonlinear phenomena, we develop a coupled-amplitude method for a two-dimensional system in the strongly nonlinear regime of interaction. At low electron densities the absorption coefficient decreases with increasing sound intensity, whereas at high electron density the absorption coefficient is not a monotonous function of the sound intensity. High-harmonic generation coefficients as a function of the sound intensity have a nontrivial behavior. Theory and experiment are found to be in a good agreement.Comment: 27 pages, 6 figure

    Dynamics of quantum systems

    Get PDF
    A relation between the eigenvalues of an effective Hamilton operator and the poles of the SS matrix is derived which holds for isolated as well as for overlapping resonance states. The system may be a many-particle quantum system with two-body forces between the constituents or it may be a quantum billiard without any two-body forces. Avoided crossings of discrete states as well as of resonance states are traced back to the existence of branch points in the complex plane. Under certain conditions, these branch points appear as double poles of the SS matrix. They influence the dynamics of open as well as of closed quantum systems. The dynamics of the two-level system is studied in detail analytically as well as numerically.Comment: 21 pages 7 figure

    Observation of resonance trapping in an open microwave cavity

    Full text link
    The coupling of a quantum mechanical system to open decay channels has been theoretically studied in numerous works, mainly in the context of nuclear physics but also in atomic, molecular and mesoscopic physics. Theory predicts that with increasing coupling strength to the channels the resonance widths of all states should first increase but finally decrease again for most of the states. In this letter, the first direct experimental verification of this effect, known as resonance trapping, is presented. In the experiment a microwave Sinai cavity with an attached waveguide with variable slit width was used.Comment: to be published in Phys. Rev. Let
    • …
    corecore