74 research outputs found

    Tunnel Magnetoresistance Sensors with Magnetostrictive Electrodes: Strain Sensors

    Get PDF
    Magnetostrictive tunnel magnetoresistance (TMR) sensors pose a bright perspective in micro- and nano-scale strain sensing technology. The behavior of TMR sensors under mechanical stress as well as their sensitivity to the applied stress depends on the magnetization configuration of magnetic tunnel junctions (MTJ)s with respect to the stress axis. Here, we propose a configuration resulting in an inverse effect on the tunnel resistance by tensile and compressive stresses. Numerical simulations, based on a modified Stoner–Wohlfarth (SW) model, are performed in order to understand the magnetization reversal of the sense layer and to find out the optimum bias magnetic field required for high strain sensitivity. At a bias field of -3.2 kA/m under a 0.2 × 10−3^{-3} strain, gauge factors of 2294 and -311 are calculated under tensile and compressive stresses, respectively. Modeling results are investigated experimentally on a round junction with a diameter of 30 ± 0.2 ÎŒm using a four-point bending apparatus. The measured field and strain loops exhibit nearly the same trends as the calculated ones. Also, the gauge factors are in the same range. The junction exhibits gauge factors of 2150 ± 30 and -260 for tensile and compressive stresses, respectively, under a -3.2 kA/m bias magnetic field. The agreement of the experimental and modeling results approves the proposed configuration for high sensitivity and ability to detect both tensile and compressive stresses by a single TMR sensor

    A scanning probe microscope for magnetoresistive cantilevers utilizing a nested scanner design for large-area scans

    Get PDF
    Meier T, Foerste A, Tavassolizadeh A, et al. A scanning probe microscope for magnetoresistive cantilevers utilizing a nested scanner design for large-area scans. Beilstein Journal of Nanotechnology. 2015;6:451-461.We describe an atomic force microscope (AFM) for the characterization of self-sensing tunneling magnetoresistive (TMR) cantilevers. Furthermore, we achieve a large scan-range with a nested scanner design of two independent piezo scanners: a small high resolution scanner with a scan range of 5 x 5 x 5 mu m(3) is mounted on a large-area scanner with a scan range of 800 x 800 x 35 mu m(3). In order to characterize TMR sensors on AFM cantilevers as deflection sensors, the AFM is equipped with a laser beam deflection setup to measure the deflection of the cantilevers independently. The instrument is based on a commercial AFM controller and capable to perform large-area scanning directly without stitching of images. Images obtained on different samples such as calibration standard, optical grating, EPROM chip, self-assembled monolayers and atomic step-edges of gold demonstrate the high stability of the nested scanner design and the performance of self-sensing TMR cantilevers

    Sign change in the tunnel magnetoresistance of Fe3O4/MgO/Co-Fe-B magnetic tunnel junctions depending on the annealing temperature and the interface treatment

    Full text link
    Magnetite (Fe3O4) is an eligible candidate for magnetic tunnel junctions (MTJs) since it shows a high spin polarization at the Fermi level as well as a high Curie temperature of 585{\deg}C. In this study, Fe3O4/MgO/Co-Fe-B MTJs were manufactured. A sign change in the TMR is observed after annealing the MTJs at temperatures between 200{\deg}C and 280{\deg}C. Our findings suggest an Mg interdiffusion from the MgO barrier into the Fe3O4 as the reason for the change of the TMR. Additionally, different treatments of the magnetite interface (argon bombardment, annealing at 200{\deg}C in oxygen atmosphere) during the preparation of the MTJs have been studied regarding their effect on the performance of the MTJs. A maximum TMR of up to -12% could be observed using both argon bombardment and annealing in oxygen atmosphere, despite exposing the magnetite surface to atmospheric conditions before the deposition of the MgO barrier.Comment: 5 pages, 5 figures, 2 table

    Co-sputtered PtMnSb thin films and PtMnSb/Pt bilayers for spin-orbit torque investigations

    Get PDF
    The manipulation of the magnetization by spin-orbit torques (SOTs) has recently been extensively studied due to its potential for efficiently writing information in magnetic memories. Particular attention is paid to non-centrosymmetric systems with space inversion asymmetry, where SOTs emerge even in single-layer materials. The half-metallic half-Heusler PtMnSb is an interesting candidate for studies of this intrinsic SOT. Here, we report on the growth and epitaxial properties of PtMnSb thin films and PtMnSb/Pt bilayers deposited on MgO(001) substrates by dc magnetron co-sputtering at high temperature in ultra-high vacuum. The film properties were investigated by X-ray diffraction, X-ray reflectivity, atomic force microscopy, and electron microscopy. Thin PtMnSb films present a monocrystalline C1b phase with (001) orientation, coexisting at increasing thickness with a polycrystalline phase with (111) texture. Films thinner than about 5 nm grow in islands, whereas thicker films grow ultimately layer-by-layer, forming a perfect MgO/PtMnSb interface. The thin PtMnSb/Pt bilayers also show island growth and a defective transition zone, while thicker films grow layer-by-layer and Pt grows epitaxially on the half-Heusler compound without significant interdiffusion. (C) 2017 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</p
    • 

    corecore