72 research outputs found

    Hematological, biochemical, and morphological parameters as prognostic indicators for stranded common dolphins (Delphinus delphis) from Cape Cod, Massachusetts, U.S.A.

    Get PDF
    © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Marine Mammal Science 30 (2014): 864–887, doi:10.1111/mms.12093.The current paucity of published blood values and other clinically relevant data for short-beaked common dolphins, Delphinus delphis, hinders the ability of veterinarians and responders to make well-informed diagnoses and disposition decisions regarding live strandings of this species. This study examined hematologic, clinical chemistry, and physical parameters from 26 stranded common dolphins on Cape Cod, Massachusetts, in light of their postrelease survival data to evaluate each parameter's efficacy as a prognostic indicator. Statistically and clinically significant differences were found between failed and survived dolphins, including lower hematocrit, hemoglobin, TCO2, and bicarbonate and higher blood urea nitrogen, uric acid, and length-to-girth ratios in animals that failed. In general when compared to survivors, failed dolphins exhibited acidosis, dehydration, lower PCVs, and decreased body condition. Additionally, failed dolphins had the highest ALT, AST, CK, LDH, GGT, and lactate values. These blood values combined with necropsy findings indicate that there are likely a variety of factors affecting postrelease survival, including both preexisting illness and stranding-induced conditions such as capture myopathy. Closer evaluation of these parameters for stranded common dolphins on point of care analyzers in the field may allow stranding personnel to make better disposition decisions in the future.The John H. Prescott Marine Mammal Rescue Assistance Program provided support for stranding response efforts during this study period (Grants: NA11NMF4390078, NA11NMF4390079, NA11NMF4390093). We would like to thank the Pegasus Foundation and Barbara Birdsey for their support and funding for the IFAW Satellite Tag Program. This project would not have been possible without a summer research grant from the US Army Medical Research and Material Command through Tufts Cummings School of Veterinary Medicine (TCSVM)

    Fatally entangled right whales can die extremely slowly

    Get PDF
    Author Posting. © IEEE, 2006. This article is posted here by permission of IEEE for personal use, not for redistribution. The definitive version was published in Proceedings Oceans 2006, Boston, MA, USA, 3 pp, doi:10.1109/OCEANS.2006.306792.Unlike smaller marine mammals that lack the mass and power to break free from serious entanglements in fixed fishing gear, right whales can do so, but they are not always rope free. The remaining rope can gradually constrict one or more body parts and the resulting debilitation and ultimate death can take many months. Thus the practices that lead to these mortalities need to be viewed not only as a conflict between the cultural and socioeconomic value of a fishery versus a potential species extinction process, but also in terms of an extreme animal welfare issue.Supported by NOAA NA04NMF4720392, Woods Hole Oceanographic Institution Ocean Life Institute, and the North Pond Foundation

    Discrimination between bycatch and other causes of cetacean and pinniped stranding

    Get PDF
    © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Diseases of Aquatic Organisms 127 (2018): 83-95, doi:10.3354/dao03189.The challenge of identifying cause of death in discarded bycaught marine mammals stems from a combination of the non-specific nature of the lesions of drowning, the complex physiologic adaptations unique to breath-holding marine mammals, lack of case histories, and the diverse nature of fishing gear. While no pathognomonic lesions are recognized, signs of acute external entanglement, bulging or reddened eyes, recently ingested gastric contents, pulmonary changes, and decompression-associated gas bubbles have been identified in the condition of peracute underwater entrapment (PUE) syndrome in previous studies of marine mammals. We reviewed the gross necropsy and histopathology reports of 36 cetaceans and pinnipeds including 20 directly observed bycaught and 16 live stranded animals that were euthanized between 2005 and 2011 for lesions consistent with PUE. We identified 5 criteria which present at significantly higher rates in bycaught marine mammals: external signs of acute entanglement, red or bulging eyes, recently ingested gastric contents, multi-organ congestion, and disseminated gas bubbles detected grossly during the necropsy and histologically. In contrast, froth in the trachea or primary bronchi, and lung changes (i.e. wet, heavy, froth, edema, congestion, and hemorrhage) were poor indicators of PUE. This is the first study that provides insight into the different published parameters for PUE in bycatch. For regions frequently confronted by stranded marine mammals with non-specific lesions, this could potentially aid in the investigation and quantification of marine fisheries interactions.This work was supported by the Nat - ional Oceanic and Atmospheric Administration (NOAA) John H. Prescott Program NA12NMF4390144. The WHOI Marine Mammal Center, Wick and Sloan Simmons, and the University of Las Palmas de Gran Canaria provided postdoctoral funding for Y.B.Q

    Rope trauma, sedation, disentanglement, and monitoring-tag associated lesions in a terminally entangled North Atlantic right whale (Eubalaena glacialis)

    Get PDF
    Author Posting. © Society for Marine Mammalogy, 2012. Re-use of this article is permitted in accordance with the Terms and Conditions set out at http://wileyonlinelibrary.com/onlineopen#OnlineOpen_Terms. The definitive version was published in Marine Mammal Science 29 (2013): E98–E113, doi:10.1111/j.1748-7692.2012.00591.x.A chronically entangled North Atlantic right whale, with consequent emaciation was sedated, disentangled to the extent possible, administered antibiotics, and satellite tag tracked for six subsequent days. It was found dead 11 d after the tag ceased transmission. Chronic constrictive deep rope lacerations and emaciation were found to be the proximate cause of death, which may have ultimately involved shark predation. A broadhead cutter and a spring-loaded knife used for disentanglement were found to induce moderate wounds to the skin and blubber. The telemetry tag, with two barbed shafts partially penetrating the blubber was shed, leaving barbs embedded with localized histological reaction. One of four darts administered shed the barrel, but the needle was found postmortem in the whale with an 80º bend at the blubber-muscle interface. This bend occurred due to epaxial muscle movement relative to the overlying blubber, with resultant necrosis and cavitation of underlying muscle. This suggests that rigid, implanted devices that span the cetacean blubber muscle interface, where the muscle moves relative to the blubber, could have secondary health impacts. Thus we encourage efforts to develop new tag telemetry systems that do not penetrate the subdermal sheath, but still remain attached for many months.Funding from NOAA Cooperative Agreement NA09OAR4320129, PO EA133F09SE4792, M. S. Worthington Foundation, North Pond Foundation, Sloan and Hardwick Simmons, and Woods Hole Oceanographic Institution Marine Mammal Center

    Lobomycosis in Offshore Bottlenose Dolphins (Tursiops truncatus), North Carolina

    Get PDF
    Lacazia loboi, a cutaneous fungus, is found in humans and dolphins from transitional tropical (Florida) and tropical (South America) regions. We report 2 cases of lobomycosis in stranded bottlenose dolphins (Tursiops truncatus) and 1 case of lobomycosis-like disease in 1 free-swimming, pelagic, offshore bottlenose dolphin from North Carolina, where no cases have previously been observed

    Bartonella species detection in captive, stranded and free-ranging cetaceans

    Get PDF
    We present prevalence of Bartonella spp. for multiple cohorts of wild and captive cetaceans. One hundred and six cetaceans including 86 bottlenose dolphins (71 free-ranging, 14 captive in a facility with a dolphin experiencing debility of unknown origin, 1 stranded), 11 striped dolphins, 4 harbor porpoises, 3 Risso's dolphins, 1 dwarf sperm whale and 1 pygmy sperm whale (all stranded) were sampled. Whole blood (n = 95 live animals) and tissues (n = 15 freshly dead animals) were screened by PCR (n = 106 animals), PCR of enrichment cultures (n = 50 animals), and subcultures (n = 50 animals). Bartonella spp. were detected from 17 cetaceans, including 12 by direct extraction PCR of blood or tissues, 6 by PCR of enrichment cultures, and 4 by subculture isolation. Bartonella spp. were more commonly detected from the captive (6/14, 43%) than from free-ranging (2/71, 2.8%) bottlenose dolphins, and were commonly detected from the stranded animals (9/21, 43%; 3/11 striped dolphins, 3/4 harbor porpoises, 2/3 Risso's dolphins, 1/1 pygmy sperm whale, 0/1 dwarf sperm whale, 0/1 bottlenose dolphin). Sequencing identified a Bartonella spp. most similar to B. henselae San Antonio 2 in eight cases (4 bottlenose dolphins, 2 striped dolphins, 2 harbor porpoises), B. henselae Houston 1 in three cases (2 Risso's dolphins, 1 harbor porpoise), and untyped in six cases (4 bottlenose dolphins, 1 striped dolphin, 1 pygmy sperm whale). Although disease causation has not been established, Bartonella species were detected more commonly from cetaceans that were overtly debilitated or were cohabiting in captivity with a debilitated animal than from free-ranging animals. The detection of Bartonella spp. from cetaceans may be of pathophysiological concern

    Standardizing gross descriptions of skin lesions in common bottlenose dolphins (Tursiops truncatus) stranded in Southwest Florida, 2015–2019

    Get PDF
    As the first line of defense, the integumentary system is critical in comprehensively evaluating dolphin morbidity during stranding response. Most published studies on skin lesions in bottlenose dolphins (Tursiops truncatus) lack standardized gross descriptions and methodologies for evaluating lesions. The primary objective of this study was to evaluate the effectiveness of an assessment matrix designed to consistently describe skin lesions based on a set of standardized gross description characteristics. The matrix was implemented by reviewing necropsy reports, histopathology reports, and photographs collected from bottlenose dolphins stranded in Southwest Florida from 2015 through 2019. Of the 32 dolphins that met the inclusion criteria, 19 presented with skin lesions and five reviewers described each of the 46 lesions according to a novel, standardized assessment matrix. The most common descriptor selected, in each of the respective matrix categories, were, by anatomic location, head; distribution, multifocal to coalescing; quantity, moderate (10–30); size, <2 cm; shape, punctate; margin, rounded; color modifier, hyperpigmentation; texture, smooth; and texture modifier, flat. These prevalent descriptors coincided with the frequent occurrence of histologically described hydropic degeneration (n=7, 15.2%) and were confirmed poxviral lesions in 6.52% (n=3). Identifying lesion patterns using standardized descriptors capitalizes on the unique pathogen tissue tropism and the implementation of certain disease mechanisms in the integumentary system. Therefore, it can facilitate differential disease diagnoses and guide ancillary diagnostics testing. The use of standardized descriptors will aid in etiologic identification and monitoring of skin lesions and associated diseases, advancing our understanding of dolphin morbidity and mortality

    Deadly diving? Physiological and behavioural management of decompression stress in diving mammals

    Get PDF
    © The Author(s), 2011. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Proceedings of the Royal Society B Biological Sciences 279 (2012): 1041-1050, doi:10.1098/rspb.2011.2088.Decompression sickness (DCS; ‘the bends’) is a disease associated with gas uptake at pressure. The basic pathology and cause are relatively well known to human divers. Breath-hold diving marine mammals were thought to be relatively immune to DCS owing to multiple anatomical, physiological and behavioural adaptations that reduce nitrogen gas (N2) loading during dives. However, recent observations have shown that gas bubbles may form and tissue injury may occur in marine mammals under certain circumstances. Gas kinetic models based on measured time-depth profiles further suggest the potential occurrence of high blood and tissue N2 tensions. We review evidence for gas-bubble incidence in marine mammal tissues and discuss the theory behind gas loading and bubble formation. We suggest that diving mammals vary their physiological responses according to multiple stressors, and that the perspective on marine mammal diving physiology should change from simply minimizing N2 loading to management of the N2 load. This suggests several avenues for further study, ranging from the effects of gas bubbles at molecular, cellular and organ function levels, to comparative studies relating the presence/absence of gas bubbles to diving behaviour. Technological advances in imaging and remote instrumentation are likely to advance this field in coming years.This paper and the workshop it stemmed from were funded by the Woods Hole Oceanographic Institution Marine Mammal Centre

    Phocine distemper Virus: Current knowledge and future directions

    Get PDF
    Phocine distemper virus (PDV) was first recognized in 1988 following a massive epidemic in harbor and grey seals in north-western Europe. Since then, the epidemiology of infection in North Atlantic and Arctic pinnipeds has been investigated. In the western North Atlantic endemic infection in harp and grey seals predates the European epidemic, with relatively small, localized mortality events occurring primarily in harbor seals. By contrast, PDV seems not to have become established in European harbor seals following the 1988 epidemic and a second event of similar magnitude and extent occurred in 2002. PDV is a distinct species within the Morbillivirus genus with minor sequence variation between outbreaks over time. There is now mounting evidence of PDV-like viruses in the North Pacific/Western Arctic with serological and molecular evidence of infection in pinnipeds and sea otters. However, despite the absence of associated mortality in the region, there is concern that the virus may infect the large Pacific harbor seal and northern elephant seal populations or the endangered Hawaiian monk seals. Here, we review the current state of knowledge on PDV with particular focus on developments in diagnostics, pathogenesis, immune response, vaccine development, phylogenetics and modeling over the past 20 years
    corecore