24 research outputs found

    Early Measles Vaccination During an Outbreak in the Netherlands: Short-Term and Long-Term Decreases in Antibody Respo

    Get PDF
    Background. The majority of infants will not be protected by maternal antibodies until their first measles vaccination, between 12 and 15 months of age. This provides incentive to reduce the age at measles vaccination, but immunological consequences are insufficiently understood, and long-term effects are largely unknown. Methods. A total of 79 infants who received early measles vaccination between 6 and 12 months age and a second dose at 14 months of age were compared to 44 children in a control group who received 1 dose at 14 months of age. Measles virus–specific neutralizing antibody concentrations and avidity were determined up to 4 years of age. Results. Infants who first received measles vaccination before 12 months of age had a long-term decrease in the concentration and avidity of measles virus–specific neutralizing antibodies, compared with infants in the control group. For 11.1% of children with a first dose before 9 months of age, antibody levels at 4 years of age had dropped below the cutoff for clinical protection. Conclusions. Early measles vaccination provides immediate protection in the majority of infants but yields a long-term decrease in neutralizing antibody responses, compared to vaccination at a later age. Additional vaccination at 14 months of age does not improve this. Over the long term, this may result in an increasing number of children susceptible to measles

    Joint sequencing of human and pathogen genomes reveals the genetics of pneumococcal meningitis

    Get PDF
    Streptococcus pneumoniae is a common nasopharyngeal colonizer, but can also cause lifethreatening invasive diseases such as empyema, bacteremia and meningitis. Genetic variation of host and pathogen is known to play a role in invasive pneumococcal disease, though to what extent is unknown. In a genome-wide association study of human and pathogen we show that human variation explains almost half of variation in susceptibility to pneumococcal meningitis and one-third of variation in severity, identifying variants in CCDC33 associated with susceptibility. Pneumococcal genetic variation explains a large amount of invasive potential (70%), but has no effect on severity. Serotype alone is insufficient to explain invasiveness, suggesting other pneumococcal factors are involved in progression to invasive disease. We identify pneumococcal genes involved

    Stress hormones, genotype, and brain organization : imlications for aggression

    Get PDF
    Contains fulltext : 23039___.PDF (publisher's version ) (Open Access

    Brain-Corticosteroid Hormone Dialogue: Slow and Persistent

    No full text
    Item does not contain fulltex

    Divergent prolactin and pituitary-adrenal activity in rats selectively bred for different dopamine responsiveness

    Get PDF
    Contains fulltext : 23725___.PDF (publisher's version ) (Open Access
    corecore