187 research outputs found

    Competing risk and heterogeneity of treatment effect in clinical trials

    Get PDF
    It has been demonstrated that patients enrolled in clinical trials frequently have a large degree of variation in their baseline risk for the outcome of interest. Thus, some have suggested that clinical trial results should routinely be stratified by outcome risk using risk models, since the summary results may otherwise be misleading. However, variation in competing risk is another dimension of risk heterogeneity that may also underlie treatment effect heterogeneity. Understanding the effects of competing risk heterogeneity may be especially important for pragmatic comparative effectiveness trials, which seek to include traditionally excluded patients, such as the elderly or complex patients with multiple comorbidities. Indeed, the observed effect of an intervention is dependent on the ratio of outcome risk to competing risk, and these risks – which may or may not be correlated – may vary considerably in patients enrolled in a trial. Further, the effects of competing risk on treatment effect heterogeneity can be amplified by even a small degree of treatment related harm. Stratification of trial results along both the competing and the outcome risk dimensions may be necessary if pragmatic comparative effectiveness trials are to provide the clinically useful information their advocates intend

    Specialist role coaching and skill training periodisation: A football goalkeeping case study

    Get PDF
    © The Author(s) 2020. In sports like association football, professional teams are increasingly devoting resources to the role-based development of individual athletes and sub-groups. By employing ‘specialist coaches’ into athlete-support structures, clubs aim to facilitate individualised athlete training programs to enhance performance preparation as well as skill learning and talent development. Here, we discuss how contemporary pedagogical training approaches, like Nonlinear Pedagogy and the Constraints-Led approach, can enhance effectiveness of specialist role-based athlete development programs to facilitate performance functionality. We argue the need for a model of specialist role-based coaching practice in high performance sports organisations, based on a unified theoretical rationale, such as ecological dynamics. To exemplify the nature of specialist role-based coaching, a case study addresses how Nonlinear Pedagogy and Constraints-Led approach are being used for training professional football goalkeepers in an U23 years age group. Integrating key concepts from ecological dynamics, allied to principles of Nonlinear Pedagogy and the Constraints-Led approach, common skill training principles for specialist role coaches are highlighted. These illustrate the use of the recently introduced ‘Periodization of Skill Training’ framework for specialist role coaching, practically exemplifying a way to harness opportunities for performance enhancement and individualised talent development in the football goalkeeping context

    Theory to Practice: Performance Preparation Models in Contemporary High-Level Sport Guided by an Ecological Dynamics Framework

    Get PDF
    Abstract: A fundamental challenge for practitioners in high-level sporting environments concerns how to support athletes in adapting behaviours to solve emergent problems during competitive performance. Guided by an ecological dynamics framework, the design and integration of competitive performance preparation models that place athlete-environment interactions at the heart of the learning process may address this challenge. This ecological conceptualisation of performance preparation signifies a shift in a coach’s role; evolving from a consistent solution provider to a learning environment designer who fosters local athlete-environment interactions. However, despite the past decades of research within the ecological dynamics framework developing an evidence-based, theoretical conceptualisation of skill acquisition, expertise and talent development, an ongoing challenge resides within its practical integration into sporting environments. This article provides two case examples in which high-level sports organisations have utilised an ecological dynamics framework for performance preparation in Australian football and Association Football. A unique perspective is offered on experiences of professional sport organisations attempting to challenge traditional ideologies for athlete performance preparation by progressing the theoretical application of ecological dynamics. These case examples intend to promote the sharing of methodological ideas to improve athlete development, affording opportunities for practitioners and applied scientists to accept, reject or adapt the approaches presented here to suit their specific ecosystems

    A controlled study of team-based learning for undergraduate clinical neurology education

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Team-based learning (TBL), a new active learning method, has not been reported for neurology education. We aimed to determine if TBL was more effective than passive learning (PL) in improving knowledge outcomes in two key neurology topics - neurological localization and neurological emergencies.</p> <p>Methods</p> <p>We conducted a modified crossover study during a nine-week internal medicine posting involving 49 third-year medical undergraduates, using TBL as the active intervention, compared against self-reading as a PL control, for teaching the two topics. Primary outcome was the mean percentage change in test scores immediately after (post-test 1) and 48 hours after TBL (post-test 2), compared to a baseline pre-test. Student engagement was the secondary outcome.</p> <p>Results</p> <p>Mean percentage change in scores was greater in the TBL versus the PL group in post-test 1 (8.8% vs 4.3%, p = 0.023) and post-test 2 (11.4% vs 3.4%, p = 0.001). After adjustment for gender and second year examination grades, mean percentage change in scores remained greater in the TBL versus the PL group for post-test 1 (10.3% vs 5.8%, mean difference 4.5%,95% CI 0.7 - 8.3%, p = 0.021) and post-test 2 (13.0% vs 4.9%, mean difference 8.1%,95% CI 3.7 - 12.5%, p = 0.001), indicating further score improvement 48 hours post-TBL. Academically weaker students, identified by poorer examination grades, showed a greater increase in scores with TBL versus strong students (p < 0.02). Measures of engagement were high in the TBL group, suggesting that continued improvements in scores 48 hours post-TBL may result from self-directed learning.</p> <p>Conclusions</p> <p>Compared to PL, TBL showed greater improvement in knowledge scores, with continued improvement up to 48 hours later. This effect is larger in academically weaker students. TBL is an effective method for improving knowledge in neurological localization and neurological emergencies in undergraduates.</p

    Short-term effects of repetitive transcranial magnetic stimulation on sleep bruxism:a pilot study

    Get PDF
    The purpose of this study was to investigate the effects of repetitive transcranial magnetic stimulation (rTMS) on patients with sleep bruxism (SB). Twelve patients with SB were included in an open, single-intervention pilot study. rTMS at 1 Hz and an intensity of 80% of the active motor threshold was applied to the ‘hot spot' of the masseter muscle representation at the primary motor cortex bilaterally for 20 min per side each day for 5 consecutive days. The jaw-closing muscle electromyographic (EMG) activity during sleep was recorded with a portable EMG recorder at baseline, during rTMS treatment and at follow-up for 5 days. In addition, patients scored their jaw-closing muscle soreness on a 0–10 numerical rating scale (NRS). Data were analysed with analysis of variance. The intensity of the EMG activity was suppressed during and after rTMS compared to the baseline (P = 0.04; P = 0.02, respectively). The NRS score of soreness decreased significantly during and after rTMS compared with baseline (P < 0.01). These findings indicated a significant inhibition of jaw-closing muscle activity during sleep along with a decrease of muscle soreness. This pilot study raises the possibility of therapeutic benefits from rTMS in patients with bruxism and calls for further and more controlled studies

    Reporting and Methods in Clinical Prediction Research: A Systematic Review

    Get PDF
    Walter Bouwmeester and colleagues investigated the reporting and methods of prediction studies in 2008, in six high-impact general medical journals, and found that the majority of prediction studies do not follow current methodological recommendations

    Induction of effective and antigen-specific antitumour immunity by a liposomal ErbB2/HER2 peptide-based vaccination construct

    Get PDF
    Efficient delivery of tumour-associated antigens to appropriate cellular compartments of antigen-presenting cells is of prime importance for the induction of potent, cell-mediated antitumour immune responses. We have designed novel multivalent liposomal constructs that co-deliver the p63–71 cytotoxic T Lymphocyte epitope derived from human ErbB2 (HER2), and HA307–319, a T-helper (Th) epitope derived from influenza haemagglutinin. Both peptides were conjugated to the surface of liposomes via a Pam3CSS anchor, a synthetic lipopeptide with potent adjuvant activity. In a murine model system, vaccination with these constructs completely protected BALB/c mice from subsequent s.c. challenge with ErbB2-expressing, but not ErbB2-negative, murine renal carcinoma (Renca) cells, indicating the induction of potent, antigen-specific immune responses. I.v. re-challenge of tumour-free animals 2 months after the first tumour cell inoculation did not result in the formation of lung tumour nodules, suggesting that long-lasting, systemic immunity had been induced. While still protecting the majority of vaccinated mice, a liposomal construct lacking the Th epitope was less effective than the diepitope construct, also correlating with a lower number of CD8+ IFN-γ+ T-cells identified upon ex vivo peptide restimulation of splenocytes from vaccinated animals. Importantly, in a therapeutic setting treatment with the liposomal vaccines resulted in cures in the majority of tumour-bearing mice and delayed tumour growth in the remaining ones. Our results demonstrate that liposomal constructs which combine Tc and Th peptide antigens and lipopeptide adjuvants can induce efficient, antigen-specific antitumour immunity, and represent promising synthetic delivery systems for the design of specific antitumour vaccines
    corecore