26 research outputs found

    Location and Level of Etk Expression in Neurons Are Associated with Varied Severity of Traumatic Brain Injury

    Get PDF
    Much recent research effort in traumatic brain injury (TBI) has been devoted to the discovery of a reliable biomarker correlating with severity of injury. Currently, no consensus has been reached regarding a representative marker for traumatic brain injury. In this study, we explored the potential of epithelial/endothelial tyrosine kinase (Etk) as a novel marker for TBI.TBI was induced in Sprague Dawley (SD) rats by controlled cortical impact. Brain tissue samples were analyzed by Western blot, Q-PCR, and immunofluorescence staining using various markers including glial fibrillary acidic protein, and epithelial/endothelial tyrosine kinase (Etk). Results show increased Etk expression with increased number and severity of impacts. Expression increased 2.36 to 7-fold relative to trauma severity. Significant upregulation of Etk appeared at 1 hour after injury. The expression level of Etk was inversely correlated with distance from injury site. Etk and trauma/inflammation related markers increased post-TBI, while other tyrosine kinases did not.The observed correlation between Etk level and the number of impacts, the severity of impact, and the time course after impact, as well as its inverse correlation with distance away from injury site, support the potential of Etk as a possible indicator of trauma severity

    Mild hypothermia reduces cardiac post-ischemic reactive hyperemia

    Get PDF
    BACKGROUND: In experimentally induced myocardial infarction, mild hypothermia (33–35°C) is beneficial if applied prior to ischemia or reperfusion. Hypothermia, when applied after reperfusion seems to confer little or no benefit. The mechanism by which hypothermia exerts its cell-protective effect during cardiac ischemia remains unclear. It has been hypothesized that hypothermia reduces the reperfusion damage; the additional damage incurred upon the myocardium during reperfusion. Reperfusion results in a massive increase in blood flow, reactive hyperemia, which may contribute to reperfusion damage. We postulated that hypothermia could attenuate the post-ischemic reactive hyperemia. METHODS: Sixteen 25–30 kg pigs, in a closed chest model, were anesthetized and temperature was established in all pigs at 37°C using an intravascular cooling catheter. The 16 pigs were then randomized to hypothermia (34°C) or control (37°C). The left main coronary artery was then catheterized with a PCI guiding catheter. A Doppler flow wire was placed in the mid part of the LAD and a PCI balloon was then positioned proximal to the Doppler wire but distal to the first diagonal branch. The LAD was then occluded for ten minutes in all pigs. Coronary blood flow was measured before, during and after ischemia/reperfusion. RESULTS: The peak flow seen during post-ischemic reactive hyperemia (during the first minutes of reperfusion) was significantly reduced by 43 % (p < 0.01) in hypothermic pigs compared to controls. CONCLUSION: Mild hypothermia significantly reduces post-ischemic hyperemia in a closed chest pig model. The reduction of reactive hyperemia during reperfusion may have an impact on cardiac reperfusion injury
    corecore