4,578 research outputs found
Causation in the Presence of Weak Associations
none1siDespite their observational nature, epidemiologic studies have been used to make inductive inferences about the causes of
human diseases. In this context, I mainly consider the term “cause” in its cognitive (explanatory) meaning, that is, by detecting
causal factors and identifying mechanisms of diseases...openBoffetta, P.Boffetta, P
Measures of gravitational entropy I. Self-similar spacetimes
We examine the possibility that the gravitational contribution to the entropy
of a system can be identified with some measure of the Weyl curvature. In this
paper we consider homothetically self-similar spacetimes. These are believed to
play an important role in describing the asymptotic properties of more general
models. By exploiting their symmetry properties we are able to impose
significant restrictions on measures of the Weyl curvature which could reflect
the gravitational entropy of a system. In particular, we are able to show, by
way of a more general relation, that the most widely used "dimensionless"
scalar is \textit{not} a candidate for this measure along homothetic
trajectories.Comment: revtex, minor clarifications, to appear in Physical Review
Feminism, Abortion and Disability: irreconcilable differences?
There has been considerable discussion of the political allegiance between the feminist and disability movements, but the question of abortion remains a thorny one. Disability rights advocates have been keen to demonstrate that it is possible to believe in a woman's right to sovereignty over the body and, yet, be opposed to the selective abortion of an impaired foetus – describing the latter as a form of 'weak' eugenics.
The aim of this paper is to show that whilst there may be some points of agreement between the feminist and disability movements on the question of abortion, there exist fundamental and irreconcilable differences
Three dimensional hysdrodynamic lattice-gas simulations of binary immiscible and ternary amphiphilic flow through porous media
We report the results of a study of multiphase flow in porous media. A
Darcy's law for steady multiphase flow was investigated for both binary and
ternary amphiphilic flow. Linear flux-forcing relationships satisfying Onsager
reciprocity were shown to be a good approximation of the simulation data. The
dependence of the relative permeability coefficients on water saturation was
investigated and showed good qualitative agreement with experimental data.
Non-steady state invasion flows were investigated, with particular interest in
the asymptotic residual oil saturation. The addition of surfactant to the
invasive fluid was shown to significantly reduce the residual oil saturation.Comment: To appear in Phys. Rev.
A novel physiological role for ARF1 in the formation of bidirectional tubules from the Golgi.
Capitalizing on CRISPR/Cas9 gene-editing techniques and super-resolution nanoscopy, we explore the role of the small GTPase ARF1 in mediating transport steps at the Golgi. Besides its well-established role in generating COPI vesicles, we find that ARF1 is also involved in the formation of long (∼3 µm), thin (∼110 nm diameter) tubular carriers. The anterograde and retrograde tubular carriers are both largely free of the classical Golgi coat proteins coatomer (COPI) and clathrin. Instead, they contain ARF1 along their entire length at a density estimated to be in the range of close packing. Experiments using a mutant form of ARF1 affecting GTP hydrolysis suggest that ARF1[GTP] is functionally required for the tubules to form. Dynamic confocal and stimulated emission depletion imaging shows that ARF1-rich tubular compartments fall into two distinct classes containing 1) anterograde cargoes and clathrin clusters or 2) retrograde cargoes and coatomer clusters
Fast Domain Growth through Density-Dependent Diffusion in a Driven Lattice Gas
We study electromigration in a driven diffusive lattice gas (DDLG) whose
continuous Monte Carlo dynamics generate higher particle mobility in areas with
lower particle density. At low vacancy concentrations and low temperatures,
vacancy domains tend to be faceted: the external driving force causes large
domains to move much more quickly than small ones, producing exponential domain
growth. At higher vacancy concentrations and temperatures, even small domains
have rough boundaries: velocity differences between domains are smaller, and
modest simulation times produce an average domain length scale which roughly
follows , where varies from near .55 at 50% filling
to near .75 at 70% filling. This growth is faster than the behavior
of a standard conserved order parameter Ising model. Some runs may be
approaching a scaling regime. At low fields and early times, fast growth is
delayed until the characteristic domain size reaches a crossover length which
follows . Rough numerical estimates give and simple theoretical arguments give . Our conclusion that
small driving forces can significantly enhance coarsening may be relevant to
the YBCuO electromigration experiments of Moeckly {\it et
al.}(Appl. Phys. Let., {\bf 64}, 1427 (1994)).Comment: 18 pages, RevTex3.
Permeability of self-affine rough fractures
The permeability of two-dimensional fractures with self-affine fractal
roughness is studied via analytic arguments and numerical simulations. The
limit where the roughness amplitude is small compared with average fracture
aperture is analyzed by a perturbation method, while in the opposite case of
narrow aperture, we use heuristic arguments based on lubrication theory.
Numerical simulations, using the lattice Boltzmann method, are used to examine
the complete range of aperture sizes, and confirm the analytic arguments.Comment: 11 pages, 9 figure
Optomagnetic composite medium with conducting nanoelements
A new type of metal-dielectric composites has been proposed that is
characterised by a resonance-like behaviour of the effective permeability in
the infrared and visible spectral ranges. This material can be referred to as
optomagnetic medium. The analytical formalism developed is based on solving the
scattering problem for considered inclusions with impedance boundary condition,
which yields the current and charge distributions within the inclusions. The
presence of the effective magnetic permeability and its resonant properties
lead to novel optical effects and open new possible applications.Comment: 48 pages, 13 figures. accepted to Phys. Rev. B; to appear vol. 66,
200
Nearest pattern interaction and global pattern formation
We studied the effect of nearest pattern interaction on a globally pattern
formation in a 2-dimensional space, where patterns are to grow initially from a
noise in the presence of periodic supply of energy. Although our approach is
general, we found that this study is relevant in particular to the pattern
formation on a periodically vibrated granular layer, as it gives a unified
perspective of the experimentally observed pattern dynamics such as oscillon
and stripe formations, skew-varicose and crossroll instabilities, and also a
kink formation and decoration
Recommended from our members
Systems Analysis for Material Control and Accountancy Technology (SAMCAT)
The Systems Analysis for Material Control and Accountancy Technology (SAMCAT) is an interactive computer-based management system developed for the Department of Energy Office of Safeguards and Security, to assist in defining and prioritizing measurement upgrades programs for Material Control and Accountancy (MC A). The accountancy upgrades options evaluated by SAMCAT in this study are: (1) improvement of the uncertainties in the SNM measurement methods, (2) reduction of throughputs and/or inventories of SNM, and (3) reduction of the material balance accounting period. The goals of the MC A upgrades program are reduced inventory differences and associated uncertainties, improved detection probabilities for theft/diversion, decreased operating costs, and enhanced material traceability. 6 refs., 3 figs., 2 tabs
- …