435 research outputs found

    NEGotiating Cell Identity through Regulated Cytoplasmic Polyadenylation

    Get PDF
    In this issue of Developmental Cell, Elewa et al. (2015) show that combinatorial action of RNA binding proteins modulates poly(A) tail length of maternal mRNAs, leading to asymmetric expression of a cell fate determinant in early C. elegans embryos. Genome-wide profiling suggests this mechanism may be widely used to establish cell identities

    Repression of Cell-Cell Fusion by Components of the C. elegans Vacuolar ATPase Complex

    Get PDF
    SummaryCell-cell fusion initiates fertilization, sculpts tissues during animal development, reprograms stem cells to new differentiated states, and may be a key step in cancer progression. While cell fusion is tightly regulated, the mechanisms that limit fusion to appropriate partners are unknown. Here, we report that the fus-1 gene is essential to repress fusion of epidermal cells in C. elegans: in severe fus-1 mutants, all epidermal cells, except the lateral seam cells, inappropriately fuse into a single large syncytium. This hyperfusion requires EFF-1, an integral membrane protein essential for fusion of epidermal cells into discrete syncytia. FUS-1 is localized to the apical plasma membrane in all epidermal cells potentiated to undergo fusion, whereas it is virtually undetectable in nonfusing seam cells. fus-1 encodes the e subunit of the vacuolar H+-ATPase (V-ATPase), and loss of other V-ATPase subunits also causes widespread hyperfusion. These findings raise the possibility of manipulating cell fusion by altering V-ATPase activity

    Lattice-Boltzmann Method for Non-Newtonian Fluid Flows

    Full text link
    We study an ad hoc extension of the Lattice-Boltzmann method that allows the simulation of non-Newtonian fluids described by generalized Newtonian models. We extensively test the accuracy of the method for the case of shear-thinning and shear-thickening truncated power-law fluids in the parallel plate geometry, and show that the relative error compared to analytical solutions decays approximately linear with the lattice resolution. Finally, we also tested the method in the reentrant-flow geometry, in which the shear-rate is no-longer a scalar and the presence of two singular points requires high accuracy in order to obtain satisfactory resolution in the local stress near these points. In this geometry, we also found excellent agreement with the solutions obtained by standard finite-element methods, and the agreement improves with higher lattice resolution

    Essential embryonic roles of the CKI-1 cyclin-dependent kinase inhibitor in cell-cycle exit and morphogenesis in C. elegans

    Get PDF
    AbstractFollowing a phase of rapid proliferation, cells in developing embryos must decide when to cease division and then whether to survive and differentiate or instead undergo programmed death. In screens for genes that regulate embryonic patterning of the endoderm in Caenorhabditis elegans, we identified overlapping chromosomal deletions that define a gene required for these decisions. These deletions result in embryonic hyperplasia in multiple somatic tissues, excessive numbers of cell corpses, and profound defects in morphogenesis and differentiation. However, cell-cycle arrest of the germline is unaffected. Cell lineage analysis of these mutants revealed that cells that normally stop dividing earlier than their close relatives instead undergo an extra round of division. These deletions define a genomic region that includes cki-1 and cki-2, adjacent genes encoding members of the Cip/Kip family of cyclin-dependent kinase inhibitors. cki-1 alone can rescue the cell proliferation, programmed cell death, and differentiation and morphogenesis defects observed in these mutants. In contrast, cki-2 is not capable of significantly rescuing these phenotypes. RNA interference of cki-1 leads to embryonic lethality with phenotypes similar to, or more severe than, the deletion mutants. cki-1 and -2 gene reporters show distinct expression patterns; while both are expressed at around the time that embryonic cells exit the cell cycle, cki-2 also shows marked expression starting early in embryogenesis, when rapid cell division occurs. Our findings demonstrate that cki-1 activity plays an essential role in embryonic cell cycle arrest, differentiation and morphogenesis, and suggest that it may be required to suppress programmed cell death or engulfment of cell corpses

    Transorganogenesis and transdifferentiation in C. elegans are dependent on differentiated cell identity

    Get PDF
    AbstractThe differentiated cell identities and structure of fully formed organs are generally stable after their development. In contrast, we report here that development of the C. elegans proximal somatic gonad (hermaphrodite uterus and spermathecae, and male vas deferens) can be redirected into intestine-like organs by brief expression of the ELT-7 GATA transcription factor. This process converts one developing organ into another and can hence be considered “transorganogenesis.” We show that, following pulsed ELT-7 expression, cells of the uterus activate and maintain intestine-specific gene expression and are transformed at the ultrastructural level to form an epithelial tube resembling the normal intestine formed during embryogenesis. Ubiquitous ELT-7 expression activates intestinal markers in many different cell types but only cells in the somatic gonad and pharynx appear to become fully reprogrammed. We found that ectopic expression of other endoderm-promoting transcription factors, but not muscle- or ectoderm- promoting transcription factors, redirects the fate of these organs, suggesting that pharyngeal and somatic gonad cells are specifically competent to adopt intestine identity. Although the intestine, pharynx, and somatic gonad are derived from distant cell lineages, they all express the PHA-4/FoxA transcription factor. While we found that post-embryonic PHA-4 is not necessary for pharynx or uterus reprogramming and PHA-4 is not sufficient in combination with ELT-7 to induce reprogramming in other cells types, knock down of PHA-4 during embryogenesis, which abolishes normal pharynx differentiation, prevents pharyngeal precursors from being reprogrammed into intestine. These results suggest that differentiated cell identity determines susceptibility to transdifferentiation and highlight the importance of cellular context in controlling competency for reprogramming

    Permeability of self-affine rough fractures

    Full text link
    The permeability of two-dimensional fractures with self-affine fractal roughness is studied via analytic arguments and numerical simulations. The limit where the roughness amplitude is small compared with average fracture aperture is analyzed by a perturbation method, while in the opposite case of narrow aperture, we use heuristic arguments based on lubrication theory. Numerical simulations, using the lattice Boltzmann method, are used to examine the complete range of aperture sizes, and confirm the analytic arguments.Comment: 11 pages, 9 figure

    GSVD Comparison of Patient-Matched Normal and Tumor aCGH Profiles Reveals Global Copy-Number Alterations Predicting Glioblastoma Multiforme Survival

    Get PDF
    Despite recent large-scale profiling efforts, the best prognostic predictor of glioblastoma multiforme (GBM) remains the patient's age at diagnosis. We describe a global pattern of tumor-exclusive co-occurring copy-number alterations (CNAs) that is correlated, possibly coordinated with GBM patients' survival and response to chemotherapy. The pattern is revealed by GSVD comparison of patient-matched but probe-independent GBM and normal aCGH datasets from The Cancer Genome Atlas (TCGA). We find that, first, the GSVD, formulated as a framework for comparatively modeling two composite datasets, removes from the pattern copy-number variations (CNVs) that occur in the normal human genome (e.g., female-specific X chromosome amplification) and experimental variations (e.g., in tissue batch, genomic center, hybridization date and scanner), without a-priori knowledge of these variations. Second, the pattern includes most known GBM-associated changes in chromosome numbers and focal CNAs, as well as several previously unreported CNAs in 3% of the patients. These include the biochemically putative drug target, cell cycle-regulated serine/threonine kinase-encoding TLK2, the cyclin E1-encoding CCNE1, and the Rb-binding histone demethylase-encoding KDM5A. Third, the pattern provides a better prognostic predictor than the chromosome numbers or any one focal CNA that it identifies, suggesting that the GBM survival phenotype is an outcome of its global genotype. The pattern is independent of age, and combined with age, makes a better predictor than age alone. GSVD comparison of matched profiles of a larger set of TCGA patients, inclusive of the initial set, confirms the global pattern. GSVD classification of the GBM profiles of an independent set of patients validates the prognostic contribution of the pattern

    Extended Interferon-Alpha Therapy Accelerates Telomere Length Loss in Human Peripheral Blood T Lymphocytes

    Get PDF
    BACKGROUND: Type I interferons have pleiotropic effects on host cells, including inhibiting telomerase in lymphocytes and antiviral activity. We tested the hypothesis that long-term interferon treatment would result in significant reduction in average telomere length in peripheral blood T lymphocytes. METHODS/PRINCIPAL FINDINGS: Using a flow cytometry-based telomere length assay on peripheral blood mononuclear cell samples from the Hepatitis-C Antiviral Long-term Treatment against Cirrhosis (HALT-C) study, we measured T cell telomere lengths at screening and at months 21 and 45 in 29 Hepatitis-C virus infected subjects. These subjects had failed to achieve a sustained virologic response following 24 weeks of pegylated-interferon-alpha plus ribavirin treatment and were subsequently randomized to either a no additional therapy group or a maintenance dose pegylated-IFNalpha group for an additional 3.5 years. Significant telomere loss in naive T cells occurred in the first 21 months in the interferon-alpha group. Telomere losses were similar in both groups during the final two years. Expansion of CD8(+)CD45RA(+)CD57(+) memory T cells and an inverse correlation of alanine aminotransferase levels with naive CD8(+) T cell telomere loss were observed in the control group but not in the interferon-alpha group. Telomere length at screening inversely correlated with Hepatitis-C viral load and body mass index. CONCLUSIONS/SIGNIFICANCE: Sustained interferon-alpha treatment increased telomere loss in naive T cells, and inhibited the accumulation of T cell memory expansions. The durability of this effect and consequences for immune senescence need to be defined
    • …
    corecore