241 research outputs found

    Dynamic compartmentalization of bacteria: accurate division in E. coli

    Full text link
    Positioning of the midcell division plane within the bacterium E. coli is controlled by the min system of proteins: MinC, MinD and MinE. These proteins coherently oscillate from end to end of the bacterium. We present a reaction--diffusion model describing the diffusion of min proteins along the bacterium and their transfer between the cytoplasmic membrane and cytoplasm. Our model spontaneously generates protein oscillations in good agreement with experiments. We explore the oscillation stability, frequency and wavelength as a function of protein concentration and bacterial length.Comment: 4 pages, 4 figures, Latex2e, Revtex

    Molecular cloning of a human homologue of Drosophila heterochromatin protein HP1 using anti-centromere autoantibodies with anti-chromo specificity

    Get PDF
    We have identified a novel autoantibody specificity in scleroderma that we term anti-chromo. These antibodies recognize several chromosomal antigens with apparent molecular mass of between 23 and 25 kDa, as determined by immunoblots. Anti-chromo autoantibodies occur in 10-15% of sera from patients with anti-centromere antibodies (ACA). We used anti-chromo antibodies to screen a human expression library and obtained cDNA clones encoding a 25 kDa chromosomal autoantigen. DNA sequence analysis reveals this protein to be a human homologue of HP1, a heterochromatin protein of Drosophila melanogaster. We designate our cloned protein HP1Hs alpha. Epitope mapping experiments using both human and Drosophila HP1 reveal that anti-chromo antibodies target a region at the amino terminus of the protein. This region contains a conserved motif, the chromo domain (or HP1/Pc box), first recognized by comparison of Drosophila HP1 with the Polycomb gene product. Both proteins are thought to play a role in creating chromatin structures in which gene expression is suppressed. Anti-chromo thus defines a novel type of autoantibody that recognizes a conserved structural motif found on a number of chromosomal proteins

    Programmed Bending Reveals Dynamic Mechanochemical Coupling in Supported Lipid Bilayers

    Get PDF
    In living cells, mechanochemical coupling represents a dynamic means by which membrane components are spatially organized. An extra-ordinary example of such coupling involves curvature-dependent polar localization of chemically-distinct lipid domains at bacterial poles, which also undergo dramatic reequilibration upon subtle changes in their interfacial environment such as during sporulation. Here, we demonstrate that such interfacially-triggered mechanochemical coupling can be recapitulated in vitro by simultaneous, real-time introduction of mechanically-generated periodic curvatures and attendant strain-induced lateral forces in lipid bilayers supported on elastomeric substrates. In particular, we show that real-time wrinkling of the elastomeric substrate prompts a dynamic domain reorganization within the adhering bilayer, producing large, oriented liquid-ordered domains in regions of low curvature. Our results suggest a mechanism in which interfacial forces generated during surface wrinkling and the topographical deformation of the bilayer combine to facilitate dynamic reequilibration prompting the observed domain reorganization. We anticipate this curvature-generating model system will prove to be a simple and versatile tool for a broad range of studies of curvature-dependent dynamic reorganizations in membranes that are constrained by the interfacial elastic and dynamic frameworks such as the cell wall, glycocalyx, and cytoskeleton

    Cytokine-associated neutrophil extracellular traps and antinuclear antibodies in Plasmodium falciparum infected children under six years of age

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In <it>Plasmodium falciparum</it>-infected children, the relationships between blood cell histopathology, blood plasma components, development of immunocompetence and disease severity remain poorly understood. Blood from Nigerian children with uncomplicated malaria was analysed to gain insight into these relationships. This investigation presents evidence for circulating neutrophil extracellular traps (NETs) and antinuclear IgG antibodies (ANA). The presence of NETs and ANA to double-stranded DNA along with the cytokine profiles found suggests autoimmune mechanisms that could produce pathogenesis in children, but immunoprotection in adults.</p> <p>Methods</p> <p>Peripheral blood smear slides and blood samples obtained from 21 Nigerian children under six years of age, presenting with uncomplicated malaria before and seven days after initiation of sulphadoxine-pyrimethamine (SP) treatment were analysed. The slides were stained with Giemsa and with DAPI. Levels of the pro-inflammatory cytokines IFN-γ, IL-2, TNF, CRP, and IL-6, select anti-inflammatory cytokines TGF-β and IL-10, and ANA were determined by immunoassay.</p> <p>Results</p> <p>The children exhibited circulating NETs with adherent parasites and erythrocytes, elevated ANA levels, a Th2 dominated cytokine profile, and left-shifted leukocyte differential counts. Nonspecific ANA levels were significant in 86% of the children pretreatment and in 100% of the children seven days after SP treatment, but in only 33% of age-matched control samples collected during the season of low parasite transmission. Levels of ANA specific for dsDNA were significant in 81% of the children both pre-treatment and post treatment.</p> <p>Conclusion</p> <p>The results of this investigation suggest that NET formation and ANA to dsDNA may induce pathology in falciparum-infected children, but activate a protective mechanism against falciparum malaria in adults. The significance of in vivo circulating chromatin in NETs and dsDNA ANA as a causative factor in the hyporesponsiveness of CpG oligonucleotide-based malaria vaccines is discussed.</p

    A historical perspective on the discovery of statins

    Get PDF
    Cholesterol is essential for the functioning of all human organs, but it is nevertheless the cause of coronary heart disease. Over the course of nearly a century of investigation, scientists have developed several lines of evidence that establish the causal connection between blood cholesterol, atherosclerosis, and coronary heart disease. Building on that knowledge, scientists and the pharmaceutical industry have successfully developed a remarkably effective class of drugs—the statins—that lower cholesterol levels in blood and reduce the frequency of heart attacks

    Novel Role of Phosphorylation-Dependent Interaction between FtsZ and FipA in Mycobacterial Cell Division

    Get PDF
    The bacterial divisome is a multiprotein complex. Specific protein-protein interactions specify whether cell division occurs optimally, or whether division is arrested. Little is known about these protein-protein interactions and their regulation in mycobacteria. We have investigated the interrelationship between the products of the Mycobacterium tuberculosis gene cluster Rv0014c-Rv0019c, namely PknA (encoded by Rv0014c) and FtsZ-interacting protein A, FipA (encoded by Rv0019c) and the products of the division cell wall (dcw) cluster, namely FtsZ and FtsQ. M. smegmatis strains depleted in components of the two gene clusters have been complemented with orthologs of the respective genes of M. tuberculosis. Here we identify FipA as an interacting partner of FtsZ and FtsQ and establish that PknA-dependent phosphorylation of FipA on T77 and FtsZ on T343 is required for cell division under oxidative stress. A fipA knockout strain of M. smegmatis is less capable of withstanding oxidative stress than the wild type and showed elongation of cells due to a defect in septum formation. Localization of FtsQ, FtsZ and FipA at mid-cell was also compromised. Growth and survival defects under oxidative stress could be functionally complemented by fipA of M. tuberculosis but not its T77A mutant. Merodiploid strains of M. smegmatis expressing the FtsZ(T343A) showed inhibition of FtsZ-FipA interaction and Z ring formation under oxidative stress. Knockdown of FipA led to elongation of M. tuberculosis cells grown in macrophages and reduced intramacrophage growth. These data reveal a novel role of phosphorylation-dependent protein-protein interactions involving FipA, in the sustenance of mycobacterial cell division under oxidative stress

    Growth, cell division and sporulation in mycobacteria

    Get PDF
    Bacteria have the ability to adapt to different growth conditions and to survive in various environments. They have also the capacity to enter into dormant states and some bacteria form spores when exposed to stresses such as starvation and oxygen deprivation. Sporulation has been demonstrated in a number of different bacteria but Mycobacterium spp. have been considered to be non-sporulating bacteria. We recently provided evidence that Mycobacterium marinum and likely also Mycobacterium bovis bacillus Calmette–Guérin can form spores. Mycobacterial spores were detected in old cultures and our findings suggest that sporulation might be an adaptation of lifestyle for mycobacteria under stress. Here we will discuss our current understanding of growth, cell division, and sporulation in mycobacteria

    Temporal Controls of the Asymmetric Cell Division Cycle in Caulobacter crescentus

    Get PDF
    The asymmetric cell division cycle of Caulobacter crescentus is orchestrated by an elaborate gene-protein regulatory network, centered on three major control proteins, DnaA, GcrA and CtrA. The regulatory network is cast into a quantitative computational model to investigate in a systematic fashion how these three proteins control the relevant genetic, biochemical and physiological properties of proliferating bacteria. Different controls for both swarmer and stalked cell cycles are represented in the mathematical scheme. The model is validated against observed phenotypes of wild-type cells and relevant mutants, and it predicts the phenotypes of novel mutants and of known mutants under novel experimental conditions. Because the cell cycle control proteins of Caulobacter are conserved across many species of alpha-proteobacteria, the model we are proposing here may be applicable to other genera of importance to agriculture and medicine (e.g., Rhizobium, Brucella)
    corecore