512 research outputs found
GLObal Backscatter Experiment (GLOBE) Pacific survey mission
NASA conducted the GLObal Backscatter Experiment (GLOBE) Survey Mission over the near coastal and remote Pacific Ocean during 6 to 30 Nov. 1989 (GLOBE 1) and 13 May to 5 Jun. 1990 (GLOBE 2). These missions studied the optical, physical, and chemical properties of atmospheric aerosols. Particular emphasis was given to the magnitude and spatial variability of aerosol backscatter coefficients at mid-infrared wavelengths, and to the remote middle and upper troposphere, where these aerosol properties are poorly understood. Survey instruments were selected to provide either direct beta measurements at the key wavelengths, empirical links with long term or global scale aerosol climatologies, or aerosol microphysics data required to model any of these quantities. The survey deployment included both long distance 6 to 8 hour transit flights and detailed 4 to 6 hour local flights. Several general features were observed from preliminary Survey data analyses. Validation and intercomparison results have shown good agreement, usually better than a factor of two. Atmospheric aerosols frequently exhibited a three layer vertical structure, with (1) high and fairly uniform backscatter in the shallow cloud capped marine boundary layer; (2) moderate and highly variable backscatter in a deeper overlaying cloud pumped layer; and (3) low, regionally uniform, but seasonally and latitudinally variable backscatter in the middle and upper troposphere. The survey missions represent two isolated snapshots of a small portion of the global aerosol system. Consequently, Survey results can best be understood by synthesizing them with the more comprehensive GLOBE data base, which is being compiled at NASA-Marshall
The role of hydrogen in room-temperature ferromagnetism at graphite surfaces
We present a x-ray dichroism study of graphite surfaces that addresses the
origin and magnitude of ferromagnetism in metal-free carbon. We find that, in
addition to carbon states, also hydrogen-mediated electronic states
exhibit a net spin polarization with significant magnetic remanence at room
temperature. The observed magnetism is restricted to the top 10 nm of
the irradiated sample where the actual magnetization reaches emu/g
at room temperature. We prove that the ferromagnetism found in metal-free
untreated graphite is intrinsic and has a similar origin as the one found in
proton bombarded graphite.Comment: 10 pages, 5 figures, 1 table, submitted to New Journal of Physic
Atmospheric aerosol and Doppler lidar studies
Experimental and theoretical studies were performed of atmospheric aerosol backscatter and atmospheric dynamics with Doppler lidar as a primary tool. Activities include field and laboratory measurement and analysis efforts. The primary focus of activities related to understanding aerosol backscatter is the GLObal Backscatter Experiment (GLOBE) program. GLOBE is a multi-element effort designed toward developing a global aerosol model to describe tropospheric clean background backscatter conditions that Laser Atmospheric Wind Sounder (LAWS) is likely to encounter. Two survey missions were designed and flown in the NASA DC-8 in November 1989 and May to June 1990 over the remote Pacific Ocean, a region where backscatter values are low and where LAWS wind measurements could make a major contribution. The instrument complement consisted of pulsed and continuous-wave (CW) CO2 gas and solid state lidars measuring aerosol backscatter, optical particle counters measuring aerosol concentration, size distribution, and chemical composition, a filter/impactor system collecting aerosol samples for subsequent analysis, and integrating nephelometers measuring visible scattering coefficients. The GLOBE instrument package and survey missions were carefully planned to achieve complementary measurements under clean background backscatter conditions
Dungeons and Data: A Large-Scale NetHack Dataset
Recent breakthroughs in the development of agents to solve challenging sequential decision making problems such as Go [50], StarCraft [58], or DOTA [3], have relied on both simulated environments and large-scale datasets. However, progress on this research has been hindered by the scarcity of open-sourced datasets and the prohibitive computational cost to work with them. Here we present the NetHack Learning Dataset (NLD), a large and highly-scalable dataset of trajectories from the popular game of NetHack, which is both extremely challenging for current methods and very fast to run [23]. NLD consists of three parts: 10 billion state transitions from 1.5 million human trajectories collected on the NAO public NetHack server from 2009 to 2020; 3 billion state-action-score transitions from 100,000 trajectories collected from the symbolic bot winner of the NetHack Challenge 2021; and, accompanying code for users to record, load and stream any collection of such trajectories in a highly compressed form. We evaluate a wide range of existing algorithms including online and offline RL, as well as learning from demonstrations, showing that significant research advances are needed to fully leverage large-scale datasets for challenging sequential decision making tasks
Gravity compensation in complex plasmas by application of a temperature gradient
Micron sized particles are suspended or even lifted up in a gas by
thermophoresis. This allows the study of many processes occurring in strongly
coupled complex plasmas at the kinetic level in a relatively stress-free
environment. First results are presented. The technique is also of interest for
technological applications.Comment: 4 pages, 4 figures, final version to be published in Phys. Rev. Let
Reconnaissance of the Bedrock Aquifers and Groundwater Chemistry of Crawford, Franklin, and Sebastian Counties, Arkansas
A ground water reconnaissance of Crawford, Franklin, and Sebastian counties was performed utilizing 122 wells having drillers\u27 logs from bedrock aquifers. North of the Arkansas River, essentially all bedrock wells produce from the Atoka Formation. There are many low producing aquifers within the Atoka with a range in yield of 0.1 to 55 gpm, but having a median yield of only 2 gpm. Well depths range from 18 to 248 feet with a median of 122 feet. More water is generally obtained from the shale/siltstone aquifers than the sandstones due to more bedding-plane partings and more closely spaced fractures. Greater yields are also found in valleys. South of the Arkansas River, three additional bedrock aquifers are utilized. The aquifers and median yield are as follows: (1)Savannah Sandstone (11.7 gpm), (2) Hartshorne Sandstone (10 gpm), and (3) McAlester Shale (5.2 gpm). Well depths range from 40 to 300 feet. Seventeen wells in the Atoka were sampled and analyzed. The median iron concentration was 0.15, but four wells had over the 0.3 ppm health limit. Sulfate values ranged from31 to 125 ppm with a median of 45 ppm. Chloride concentrations ranged from 16 to 58 ppm with a median of 33 ppm. These relatively high values commonly give the water a bitter and strigent taste with some H₃S odor. The source of these ions may be from pyrite weathering or to contamination from the many gas fields in the area
Considering Polymorphism in Change-Based Test Suite Reduction
With the increasing popularity of continuous integration, algorithms for
selecting the minimal test-suite to cover a given set of changes are in order.
This paper reports on how polymorphism can handle false negatives in a previous
algorithm which uses method-level changes in the base-code to deduce which
tests need to be rerun. We compare the approach with and without polymorphism
on two distinct cases ---PMD and CruiseControl--- and discovered an interesting
trade-off: incorporating polymorphism results in more relevant tests to be
included in the test suite (hence improves accuracy), however comes at the cost
of a larger test suite (hence increases the time to run the minimal
test-suite).Comment: The final publication is available at link.springer.co
- …