41 research outputs found

    Load balancing method for KDN-based data center using neural network

    Get PDF
    The growth of cloud application services delivered through data centers with varying traffic demands unveils limitations of traditional load balancing methods. Aiming to attend evolving scenarios and improve the overall network performance, this paper proposes a load balancing method based on an Artificial Neural Network (ANN) in the context of Knowledge-Defined Networking (KDN). KDN seeks to leverage Artificial Intelligence (AI) techniques for the control and operation of computer networks. KDN extends Software-Defined Networking (SDN) with advanced telemetry and network analytics introducing a so-called Knowledge Plane. The ANN is capable of predicting the network performance according to traffic parameters paths. The method includes training the ANN model to choose the path with least load. The experimental results show that the performance of the KDN-based data center has been greatly improved

    In-packet Bloom filters: Design and networking applications

    Full text link
    The Bloom filter (BF) is a well-known space-efficient data structure that answers set membership queries with some probability of false positives. In an attempt to solve many of the limitations of current inter-networking architectures, some recent proposals rely on including small BFs in packet headers for routing, security, accountability or other purposes that move application states into the packets themselves. In this paper, we consider the design of such in-packet Bloom filters (iBF). Our main contributions are exploring the design space and the evaluation of a series of extensions (1) to increase the practicality and performance of iBFs, (2) to enable false-negative-free element deletion, and (3) to provide security enhancements. In addition to the theoretical estimates, extensive simulations of the multiple design parameters and implementation alternatives validate the usefulness of the extensions, providing for enhanced and novel iBF networking applications.Comment: 15 pages, 11 figures, preprint submitted to Elsevier COMNET Journa

    Slicing on the road: enabling the automotive vertical through 5G network softwarization

    Get PDF
    The demanding requirements of Vehicle-to-Everything (V2X) applications, such as ultra-low latency, high-bandwidth, highly-reliable communication, intensive computation and near-real time data processing, raise outstanding challenges and opportunities for fifth generation (5G) systems. By allowing an operator to flexibly provide dedicated logical networks with (virtualized) functionalities over a common physical infrastructure, network slicing candidates itself as a prominent solution to support V2X over upcoming programmable and softwarized 5G systems in a business-agile manner. In this paper, a network slicing framework is proposed along with relevant building blocks and mechanisms to support V2X applications by flexibly orchestrating multi-access and edge-dominated 5G network infrastructures, especially with reference to roaming scenarios. Proof of concept experiments using the Mininet emulator showcase the viability and potential benefits of the proposed framework for cooperative driving use cases1812não temMinistério da Ciência, Tecnologia, Inovações e Comunicações - MCTICThe research of Prof. Christian Esteve Rothenberg was partially supported by the H2020 4th EUBR Collaborative Call, under the grant agreement number 777067 (NECOS - Novel Enablers for Cloud Slicing), funded by the European Commission and the Brazilian Ministry of Science, Technology, Innovation, and Communication (MCTIC) through RNP and CTI

    From theory to experimental evaluation: resource management in software-defined vehicular networks

    Get PDF
    Managing resources in dynamic vehicular environments is a tough task, which is becoming more challenging with the increased number of access technologies today available in connected cars (e.g., IEEE 802.11, LIE), in the variety of applications provided on the road (e.g., safety, traffic efficiency, and infotainment), in the amount of driving awareness/coordination required (e.g., local, context, and cooperative awareness), and in the level of automation toward zero-accident driving (e.g., platooning and autonomous driving). The open programmability and logically centralized control features of the software-defined networking (SDN) paradigm offer an attractive means to manage communication and networking resources in the vehicular environment and promise improved performance. In this paper, we enumerate the potentials of software-defined vehicular networks, analyze the need to rethink the traditional SDN approach from theoretical and practical standpoints when applied in this application context, and present an emulation approach based on the proposed node car architecture in Mininet-WiFi to showcase the applicability and some expected benefits of SDN in a selected use case scenario530693076FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESP14/18482-

    Enhancing the 3GPP V2X architecture with information-centric networking

    Get PDF
    Vehicle-to-everything (V2X) communications allow a vehicle to interact with other vehicles and with communication parties in its vicinity (e.g., road-side units, pedestrian users, etc.) with the primary goal of making the driving and traveling experience safer, smarter and more comfortable. A wide set of V2X-tailored specifications have been identified by the Third Generation Partnership Project (3GPP) with focus on the design of architecture enhancements and a flexible air interface to ensure ultra-low latency, highly reliable and high-throughput connectivity as the ultimate aim. This paper discusses the potential of leveraging Information-Centric Networking (ICN) principles in the 3GPP architecture for V2X communications. We consider Named Data Networking (NDN) as reference ICN architecture and elaborate on the specific design aspects, required changes and enhancements in the 3GPP V2X architecture to enable NDN-based data exchange as an alternative/complementary solution to traditional IP networking, which barely matches the dynamics of vehicular environments. Results are provided to showcase the performance improvements of the NDN-based proposal in disseminating content requests over the cellular network against a traditional networking solution119sem informaçãosem informaçã

    deployable) reduction of multicast state with in-packet Bloom filters

    Get PDF
    Abstract-Recent developments in networking technology have enabled massive media distribution in the Internet. However, bandwidth is still a limited resource and unicast-based media distribution from a single source to multiple receivers is inefficient. Multicasting provides traffic replication closer to the receivers allowing more efficient data distribution. IP multicast can be used for distributing data streams in IP networks, but the bandwidth saving comes at the cost of increased state in the network routers. The amount of state is directly dependent on the number of multicast groups in use. In this paper, we show how in-packet Bloom filter (iBF) multicast can be used to reduce multicast state in the network. The deployment can be done gradually: during the migration phase, a single AS can replace IP multicast with proposed iBF-based solution without affecting the rest of the network, and take advantage of the reduced state in its core routers. I. INTRODUCTION The network usage has changed since the dawn of the Internet as substantial advances in networking technology have enabled new and more diverse applications. Today's Internet performance allows transmitting high-quality audio and video streams over the net. In a typical live media transmission case, a stream is delivered to multiple receivers simultaneously. This dissemination mostly happens via massive fan-outs of unicast connections because network layer multicasting is not widely deployed or enabled -beyond possibly intra-provider IPTV streaming or overlay P2P networks [?]. This makes the media delivery inefficient from the network point of view since the data has to be sent repeatedly over the same links. The need for an efficient multicast solution is obvious. In the current Internet, multicast can be implemented either at the IP layer with IP multicast [1], or with different kinds of application layer solutions Application layer multicast protocols [2] use unicast connections to deliver traffic across routers supporting application layer multicast. At each such multicast router, data packets are replicated at the application layer if necessary, and sent to the next hop router(s) over separate unicast connections, in essence forming an overlay somewhat similar to the early Multicast backbone (Mbone). IP multicast LIPSI

    From Theory to Experimental Evaluation: Resource Management in Software-Defined Vehicular Networks

    Get PDF
    Managing resources in dynamic vehicular environments is a tough task, which is becoming more challenging with the increased number of access technologies today available in connected cars (e.g., IEEE 802.11, LTE), in the variety of applications provided on the road (e.g., safety, traffic efficiency, and infotainment), in the amount of driving awareness/coordination required (e.g., local, context, and cooperative awareness), and in the level of automation toward zero-accident driving (e.g., platooning and autonomous driving). The open programmability and logically centralized control features of the software–defined networking (SDN) paradigm offer an attractive means to manage communication and networking resources in the vehicular environment and promise improved performance. In this paper, we enumerate the potentials of software-defined vehicular networks, analyze the need to rethink the traditional SDN approach from theoretical and practical standpoints when applied in this application context, and present an emulation approach based on the proposed node car architecture in Mininet-WiFi to showcase the applicability and some expected benefits of SDN in a selected use case scenario

    Perspectives on software-defined networks: interviews with five leading scientists from the networking community

    Get PDF
    Software defined Networks (SDNs) have drawn much attention both from academia and industry over the last few years. Despite the fact that underlying ideas already exist through areas such as P2P applications and active networks (e.g. virtual topologies and dynamic changes of the network via software), only now has the technology evolved to a point where it is possible to scale the implementations, which justifies the high interest in SDNs nowadays. In this article, the JISA Editors invite five leading scientists from three continents (Raouf Boutaba, David Hutchison, Raj Jain, Ramachandran Ramjee, and Christian Esteve Rothenberg) to give their opinions about what is really new in SDNs. The interviews cover whether big telecom and data center companies need to consider using SDNs, if the new paradigm is changing the way computer networks are understood and taught, and what are the open issues on the topic

    Network Service Orchestration: A Survey

    Full text link
    Business models of network service providers are undergoing an evolving transformation fueled by vertical customer demands and technological advances such as 5G, Software Defined Networking~(SDN), and Network Function Virtualization~(NFV). Emerging scenarios call for agile network services consuming network, storage, and compute resources across heterogeneous infrastructures and administrative domains. Coordinating resource control and service creation across interconnected domains and diverse technologies becomes a grand challenge. Research and development efforts are being devoted to enabling orchestration processes to automate, coordinate, and manage the deployment and operation of network services. In this survey, we delve into the topic of Network Service Orchestration~(NSO) by reviewing the historical background, relevant research projects, enabling technologies, and standardization activities. We define key concepts and propose a taxonomy of NSO approaches and solutions to pave the way towards a common understanding of the various ongoing efforts around the realization of diverse NSO application scenarios. Based on the analysis of the state of affairs, we present a series of open challenges and research opportunities, altogether contributing to a timely and comprehensive survey on the vibrant and strategic topic of network service orchestration.Comment: Accepted for publication at Computer Communications Journa
    corecore