11,159 research outputs found
Ion confinement and transport in a toroidal plasma with externally imposed radial electric fields
Strong electric fields were imposed along the minor radius of the toroidal plasma by biasing it with electrodes maintained at kilovolt potentials. Coherent, low-frequency disturbances characteristic of various magnetohydrodynamic instabilities were absent in the high-density, well-confined regime. High, direct-current radial electric fields with magnitudes up to 135 volts per centimeter penetrated inward to at least one-half the plasma radius. When the electric field pointed radially toward, the ion transport was inward against a strong local density gradient; and the plasma density and confinement time were significantly enhanced. The radial transport along the electric field appeared to be consistent with fluctuation-induced transport. With negative electrode polarity the particle confinement was consistent with a balance of two processes: a radial infusion of ions, in those sectors of the plasma not containing electrodes, that resulted from the radially inward fields; and ion losses to the electrodes, each of the which acted as a sink and drew ions out of the plasma. A simple model of particle confinement was proposed in which the particle confinement time is proportional to the plasma volume. The scaling predicted by this model was consistent with experimental measurements
A fluctuation-induced plasma transport diagnostic based upon fast-Fourier transform spectral analysis
A diagnostic, based on fast Fourier-transform spectral analysis techniques, that provides experimental insight into the relationship between the experimentally observable spectral characteristics of the fluctuations and the fluctuation-induced plasma transport is described. The model upon which the diagnostic technique is based and its experimental implementation is discussed. Some characteristic results obtained during the course of an experimental study of fluctuation-induced transport in the electric field dominated NASA Lewis bumpy torus plasma are presented
Earth-Moon trajectories, 1965-70
Analytical model for generation of earth-moon trajectory analysis dat
Earth - venus trajectories, 1968-69, volume 4, part b
Earth-venus trajectories 1968-196
Inward transport of a toroidally confined plasma subject to strong radial electric fields
Digitally implemented spectral analysis techniques were used to investigate the frequency-dependent fluctuation-induced particle transport across a toroidal magnetic field. When the electric field pointed radially inward, the transport was inward and a significant enhancement of the plasma density and confinement time resulted
Fluctuation spectra in the NASA Lewis bumpy-torus plasma
The electrostatic potential fluctuation spectrum in the NASA Lewis bumpy-torus plasma was studied with capacitive probes in the low pressure (high impedance) mode and in the high pressure (low impedance) mode. Under different operating conditions, the plasma exhibited electrostatic potential fluctuations (1) at a set of discrete frequencies, (2) at a continuum of frequencies, and (3) as incoherent high-frequency turbulence. The frequencies and azimuthal wave numbers were determined from digitally implemented autopower and cross-power spectra. The azimuthal dispersion characteristics of the unstable waves were examined by varying the electrode voltage, the polarity of the voltage, and the neutral background density at a constant magnetic field strength
Hard-Sphere Fluids in Contact with Curved Substrates
The properties of a hard-sphere fluid in contact with hard spherical and
cylindrical walls are studied. Rosenfeld's density functional theory (DFT) is
applied to determine the density profile and surface tension for wide
ranges of radii of the curved walls and densities of the hard-sphere fluid.
Particular attention is paid to investigate the curvature dependence and the
possible existence of a contribution to that is proportional to the
logarithm of the radius of curvature. Moreover, by treating the curved wall as
a second component at infinite dilution we provide an analytical expression for
the surface tension of a hard-sphere fluid close to arbitrary hard convex
walls. The agreement between the analytical expression and DFT is good. Our
results show no signs for the existence of a logarithmic term in the curvature
dependence of .Comment: 15 pages, 6 figure
Four-fermion production with RACOONWW
RACOONWW is an event generator for e+e- --> WW --> 4fermions(+gamma) that
includes full tree-level predictions for e+e- --> 4f and e+e- --> 4f+gamma as
well as O(alpha) corrections to e+e- --> 4f in the so-called double-pole
approximation. We briefly sketch the concept of the calculation on which this
generator is based and present some numerical results.Comment: 9 pages, latex, 6 postscript files, to appear in the proceedings of
the UK Phenomenology Workshop on Collider Physics, Durham, UK, 19-24
September, 199
Phonon-phason coupling in icosahedral quasicrystals
From relaxation simulations of decoration-based quasicrystal structure models
using microscopically based interatomic pair potentials, we have calculated the
(usually neglected) phonon-phason coupling constant. Its sign is opposite for
the two alloys studied, i-AlMn and i-(Al,Cu)Li; a dimensionless measure of its
magnitude relative to the phonon and phason elastic constants is of order 1/10,
suggesting its effects are small but detectable. We also give a criterion for
when phonon-phason effects are noticeable in diffuse tails of Bragg peaks.Comment: 7 pages, LaTeX, uses Europhys Lett macros (included
- …