984 research outputs found

    Hard-Sphere Fluids in Contact with Curved Substrates

    Full text link
    The properties of a hard-sphere fluid in contact with hard spherical and cylindrical walls are studied. Rosenfeld's density functional theory (DFT) is applied to determine the density profile and surface tension γ\gamma for wide ranges of radii of the curved walls and densities of the hard-sphere fluid. Particular attention is paid to investigate the curvature dependence and the possible existence of a contribution to γ\gamma that is proportional to the logarithm of the radius of curvature. Moreover, by treating the curved wall as a second component at infinite dilution we provide an analytical expression for the surface tension of a hard-sphere fluid close to arbitrary hard convex walls. The agreement between the analytical expression and DFT is good. Our results show no signs for the existence of a logarithmic term in the curvature dependence of γ\gamma.Comment: 15 pages, 6 figure

    3D-Spectroscopy of extragalactic planetary nebulae as diagnostic probes for galaxy evolution

    Full text link
    In addition to study extragalactic stellar populations in their integrated light, the detailed analysis of individual resolved objects has become feasible, mainly for luminous giant stars and for extragalactic planetary nebulae (XPNe) in nearby galaxies. A recently started project at the Astrophysical Institute Potsdam (AIP), called ``XPN--Physics'', aims to verify if XPNe are useful probes to measure the chemical abundances of their parent stellar population. The project involves theoretical and observational work packages.Comment: 3 pages, 2 figures, to appear in Sciences Perspectives for 3D Spectroscopy. ESO Astrophysics Symposia. Edited by M.Kissler-Patig, M.M. Roth and J.R. Wals

    Theory of asymmetric non-additive binary hard-sphere mixtures

    Full text link
    We show that the formal procedure of integrating out the degrees of freedom of the small spheres in a binary hard-sphere mixture works equally well for non-additive as it does for additive mixtures. For highly asymmetric mixtures (small size ratios) the resulting effective Hamiltonian of the one-component fluid of big spheres, which consists of an infinite number of many-body interactions, should be accurately approximated by truncating after the term describing the effective pair interaction. Using a density functional treatment developed originally for additive hard-sphere mixtures we determine the zero, one, and two-body contribution to the effective Hamiltonian. We demonstrate that even small degrees of positive or negative non-additivity have significant effect on the shape of the depletion potential. The second virial coefficient B2B_2, corresponding to the effective pair interaction between two big spheres, is found to be a sensitive measure of the effects of non-additivity. The variation of B2B_2 with the density of the small spheres shows significantly different behavior for additive, slightly positive and slightly negative non-additive mixtures. We discuss the possible repercussions of these results for the phase behavior of binary hard-sphere mixtures and suggest that measurements of B2B_2 might provide a means of determining the degree of non-additivity in real colloidal mixtures

    A progressive refinement approach for the visualisation of implicit surfaces

    Get PDF
    Visualising implicit surfaces with the ray casting method is a slow procedure. The design cycle of a new implicit surface is, therefore, fraught with long latency times as a user must wait for the surface to be rendered before being able to decide what changes should be introduced in the next iteration. In this paper, we present an attempt at reducing the design cycle of an implicit surface modeler by introducing a progressive refinement rendering approach to the visualisation of implicit surfaces. This progressive refinement renderer provides a quick previewing facility. It first displays a low quality estimate of what the final rendering is going to be and, as the computation progresses, increases the quality of this estimate at a steady rate. The progressive refinement algorithm is based on the adaptive subdivision of the viewing frustrum into smaller cells. An estimate for the variation of the implicit function inside each cell is obtained with an affine arithmetic range estimation technique. Overall, we show that our progressive refinement approach not only provides the user with visual feedback as the rendering advances but is also capable of completing the image faster than a conventional implicit surface rendering algorithm based on ray casting

    Dissecting the knee - Air shower measurements with KASCADE

    Full text link
    Recent results of the KASCADE air shower experiment are presented in order to shed some light on the astrophysics of cosmic rays in the region of the knee in the energy spectrum. The results include investigations of high-energy interactions in the atmosphere, the analysis of the arrival directions of cosmic rays, the determination of the mean logarithmic mass, and the unfolding of energy spectra for elemental groups

    Nuclear energy density functional from chiral pion-nucleon dynamics: Isovector terms

    Full text link
    We extend a recent calculation of the nuclear energy density functional in the framework of chiral perturbation theory by computing the isovector surface and spin-orbit terms: (\vec \nabla \rho_p- \vec \nabla \rho_n)^2 G_d(\rho)+ (\vec \nabla \rho_p- \vec \nabla \rho_n)\cdot(\vec J_p-\vec J_n) G_{so(\rho)+(\vec J_p-\vec J_n)^2 G_J(\rho) pertaining to different proton and neutron densities. Our calculation treats systematically the effects from 1π1\pi-exchange, iterated 1π1\pi-exchange, and irreducible 2π2\pi-exchange with intermediate Δ\Delta-isobar excitations, including Pauli-blocking corrections up to three-loop order. Using an improved density-matrix expansion, we obtain results for the strength functions Gd(ρ)G_d(\rho), Gso(ρ)G_{so}(\rho) and GJ(ρ)G_J(\rho) which are considerably larger than those of phenomenological Skyrme forces. These (parameter-free) predictions for the strength of the isovector surface and spin-orbit terms as provided by the long-range pion-exchange dynamics in the nuclear medium should be examined in nuclear structure calculations at large neutron excess.Comment: 12 pages, 5 figure

    Nuclear energy density functional from chiral two- and three-nucleon interactions

    Full text link
    An improved density-matrix expansion is used to calculate the nuclear energy density functional from chiral two- and three-nucleon interactions. The two-body interaction comprises long-range one- and two-pion exchange contributions and a set of contact terms contributing up to fourth power in momenta. In addition we employ the leading order chiral three-nucleon interaction with its parameters cE,cDc_E, c_D and c1,3,4c_{1,3,4} fixed in calculations of nuclear few-body systems. With this input the nuclear energy density functional is derived to first order in the two- and three-nucleon interaction. We find that the strength functions F(ρ)F_\nabla(\rho) and Fso(ρ)F_{so}(\rho) of the surface and spin-orbit terms compare in the relevant density range reasonably with results of phenomenological Skyrme forces. However, an improved description requires (at least) the treatment of the two-body interaction to second order. This observation is in line with the deficiencies in the nuclear matter equation of state Eˉ(ρ)\bar E(\rho) that remain in the Hartree-Fock approximation with low-momentum two- and three-nucleon interactions.Comment: 16 pages, 12 figures, submitted to Eur. Phys. J.

    Hydrodynamic excitations of trapped dipolar fermions

    Full text link
    A single-component Fermi gas of polarized dipolar particles in a harmonic trap can undergo a mechanical collapse due to the attractive part of the dipole-dipole interaction. This phenomenon can be conveniently manipulated by the shape of the external trapping potential. We investigate the signatures of the instability by studying the spectrum of low-lying collective excitations of the system in the hydrodynamic regime. To this end, we employ a time-dependent variational method as well as exact numerical solutions of the hydrodynamic equations of the system.Comment: 4 pages, 2 eps figures, final versio
    corecore