632 research outputs found

    Hard-Sphere Fluids in Contact with Curved Substrates

    Full text link
    The properties of a hard-sphere fluid in contact with hard spherical and cylindrical walls are studied. Rosenfeld's density functional theory (DFT) is applied to determine the density profile and surface tension γ\gamma for wide ranges of radii of the curved walls and densities of the hard-sphere fluid. Particular attention is paid to investigate the curvature dependence and the possible existence of a contribution to γ\gamma that is proportional to the logarithm of the radius of curvature. Moreover, by treating the curved wall as a second component at infinite dilution we provide an analytical expression for the surface tension of a hard-sphere fluid close to arbitrary hard convex walls. The agreement between the analytical expression and DFT is good. Our results show no signs for the existence of a logarithmic term in the curvature dependence of γ\gamma.Comment: 15 pages, 6 figure

    Evidence for phase formation in potassium intercalated 1,2;8,9-dibenzopentacene

    Full text link
    We have prepared potassium intercalated 1,2;8,9-dibenzopentacene films under vacuum conditions. The evolution of the electronic excitation spectra upon potassium addition as measured using electron energy-loss spectroscopy clearly indicate the formation of particular doped phases with compositions Kx_xdibenzopentacene (xx = 1,2,3). Moreover, the stability of these phases as a function of temperature has been explored. Finally, the electronic excitation spectra also give insight into the electronic ground state of the potassium doped 1,2;8,9-dibenzopentacene films.Comment: 6 pages, 5 figures. arXiv admin note: text overlap with arXiv:1201.200

    Implementing NICE guidelines for the psychological treatment of depression and anxiety disorders: The IAPT experience

    Get PDF
    The Improving Access to Psychological Therapies (IAPT) programme is a large-scale initiative that aims to greatly increase the availability of NICE recommended psychological treatment for depression and anxiety disorders within the National Health Service in England. This article describes the background to the programme, the arguments on which it is based, the therapist training scheme, the clinical service model, and a summary of progress to date. At mid-point in a national roll-out of the programme progress is generally in line with expectation, and a large number of people who would not otherwise have had the opportunity to receive evidence-based psychological treatment have accessed, and benefited from, the new IAPT services. Planned future developments and challenges for the programme are briefly described

    Superconductivity in the two dimensional Hubbard Model.

    Full text link
    Quasiparticle bands of the two-dimensional Hubbard model are calculated using the Roth two-pole approximation to the one particle Green's function. Excellent agreement is obtained with recent Monte Carlo calculations, including an anomalous volume of the Fermi surface near half-filling, which can possibly be explained in terms of a breakdown of Fermi liquid theory. The calculated bands are very flat around the (pi,0) points of the Brillouin zone in agreement with photoemission measurements of cuprate superconductors. With doping there is a shift in spectral weight from the upper band to the lower band. The Roth method is extended to deal with superconductivity within a four-pole approximation allowing electron-hole mixing. It is shown that triplet p-wave pairing never occurs. Singlet d_{x^2-y^2}-wave pairing is strongly favoured and optimal doping occurs when the van Hove singularity, corresponding to the flat band part, lies at the Fermi level. Nearest neighbour antiferromagnetic correlations play an important role in flattening the bands near the Fermi level and in favouring superconductivity. However the mechanism for superconductivity is a local one, in contrast to spin fluctuation exchange models. For reasonable values of the hopping parameter the transition temperature T_c is in the range 10-100K. The optimum doping delta_c lies between 0.14 and 0.25, depending on the ratio U/t. The gap equation has a BCS-like form and (2*Delta_{max})/(kT_c) ~ 4.Comment: REVTeX, 35 pages, including 19 PostScript figures numbered 1a to 11. Uses epsf.sty (included). Everything in uuencoded gz-compressed .tar file, (self-unpacking, see header). Submitted to Phys. Rev. B (24-2-95

    Evidence for a model of agonist-induced activation of 5-hydroxytryptamine 2A serotonin receptors that involves the disruption of a strong ionic interaction between helices 3 and 6

    Get PDF
    5-Hydroxytryptamine 2A (5-HT2A) receptors are essential for the actions of serotonin (5-hydroxytryptamine (5-HT)) on physiological processes as diverse as vascular smooth muscle contraction, platelet aggregation, perception, and emotion. In this study, we investigated the molecular mechanism(s) by which 5-HT activates 5-HT2A receptors using a combination of approaches including site-directed mutagenesis, molecular modeling, and pharmacological analysis using the sensitive, cell-based functional assay R-SAT. Alanine-scanning mutagenesis of residues close to the intracellular end of H6 of the 5-HT2A receptor implicated glutamate Glu-318(6.30) in receptor activation, as also predicted by a newly constructed molecular model of the 5-HT2A receptor, which was based on the x-ray structure of bovine rhodopsin. Close examination of the molecular model suggested that Glu-318(6.30) could form a strong ionic interaction with Arg-173(3.50) of the highly conserved "(D/E)RY motif" located at the interface between the third transmembrane segment and the second intracellular loop (i2). A direct prediction of this hypothesis, that disrupting this ionic interaction by an E318(6.30)R mutation would lead to a highly constitutively active receptor with enhanced affinity for agonist, was confirmed using R-SAT. Taken together, these results predict that the disruption of a strong ionic interaction between transmembrane helices 3 and 6 of 5-HT2A receptors is essential for agonist-induced receptor activation and, as recently predicted by ourselves (B. L. Roth and D. A. Shapiro (2001) Expert Opin. Ther. Targets 5, 685-695) and others, that this may represent a general mechanism of activation for many, but not all, G-protein-coupled receptors

    Photoemission spectra of Sr2CuO2Cl2{\rm Sr_2 Cu O_2 Cl_2}: a theoretical analysis

    Full text link
    Recent angle resolved photoemission (ARPES) results for the insulating cuprate Sr2CuO2Cl2{\rm Sr_2 Cu O_2 Cl_2} have provided the first experimental data which can be directly compared to the (theoretically) well--studied problem of a single hole propagating in an antiferromagnet. The ARPES results reported a small bandwidth, providing evidence for the existence of strong correlations in the cuprates. However, in the same experiment some discrepancies with the familiar 2D tJ{\rm t-J} model were also observed. Here we discuss a comparison between the ARPES results and the quasiparticle dispersion of both (i) the ttJ{\rm t-t'-J} Hamiltonian and (ii) the three--band Hubbard model in the strong--coupling limit. Both model Hamiltonians show that the experimentally observed one--hole band structure can be approximately reproduced using reasonable values for t{\rm t'}, or the direct oxygen hopping amplitude tpp{\rm t_{pp}}.Comment: 11 pages, RevTex version 3.0, 3 postscript figures, LaTeX file and figures have been uuencoded

    Insulator-Superfluid transition of spin-1 bosons in an optical lattice in magnetic field

    Full text link
    We study the insulator-superfluid transition of spin-1 bosons in an optical lattice in a uniform magnetic field. Based on a mean-field approximation we obtained a zero-temperature phase diagram. We found that depending on the particle number the transition for bosons with antiferromagnetic interaction may occur into different superfluid phases with spins aligned along or opposite to the field direction. This is qualitatively different from the field-free transition for which the mean-field theory predicts a unique (polar) superfluid state for any particle number.Comment: 10 pages, 2 eps figure

    Electronic and Structural Properties of a 4d-Perovskite: Cubic Phase of SrZrO3_3

    Get PDF
    First-principles density functional calculations are performed within the local density approximation to study the electronic properties of SrZrO3_3, an insulating 4d-perovskite, in its high-temperature cubic phase, above 1400 K, as well as the generic 3d-perovskite SrTiO3_3, which is also a d^0-insulator and cubic above 105 K, for comparison reasons. The energy bands, density of states and charge density distributions are obtained and a detailed comparison between their band structures is presented. The results are discussed also in terms of the existing data in the literature for both oxides.Comment: 5 pages, 2 figure
    corecore