18,006 research outputs found

    Translational cooling and storage of protonated proteins in an ion trap at subkelvin temperatures

    Full text link
    Gas-phase multiply charged proteins have been sympathetically cooled to translational temperatures below 1 K by Coulomb interaction with laser-cooled barium ions in a linear ion trap. In one case, an ensemble of 53 cytochrome c molecules (mass ~ 12390 amu, charge +17 e) was cooled by ~ 160 laser-cooled barium ions to less than 0.75 K. Storage times of more than 20 minutes have been observed and could easily be extended to more than an hour. The technique is applicable to a wide variety of complex molecules.Comment: same version as published in Phys. Rev.

    Spinorial Characterizations of Surfaces into 3-dimensional pseudo-Riemannian Space Forms

    Full text link
    We give a spinorial characterization of isometrically immersed surfaces of arbitrary signature into 3-dimensional pseudo-Riemannian space forms. For Lorentzian surfaces, this generalizes a recent work of the first author in R2,1\mathbb{R}^{2,1} to other Lorentzian space forms. We also characterize immersions of Riemannian surfaces in these spaces. From this we can deduce analogous results for timelike immersions of Lorentzian surfaces in space forms of corresponding signature, as well as for spacelike and timelike immersions of surfaces of signature (0,2), hence achieving a complete spinorial description for this class of pseudo-Riemannian immersions.Comment: 9 page

    A likelihood method to cross-calibrate air-shower detectors

    Full text link
    We present a detailed statistical treatment of the energy calibration of hybrid air-shower detectors, which combine a surface detector array and a fluorescence detector, to obtain an unbiased estimate of the calibration curve. The special features of calibration data from air showers prevent unbiased results, if a standard least-squares fit is applied to the problem. We develop a general maximum-likelihood approach, based on the detailed statistical model, to solve the problem. Our approach was developed for the Pierre Auger Observatory, but the applied principles are general and can be transferred to other air-shower experiments, even to the cross-calibration of other observables. Since our general likelihood function is expensive to compute, we derive two approximations with significantly smaller computational cost. In the recent years both have been used to calibrate data of the Pierre Auger Observatory. We demonstrate that these approximations introduce negligible bias when they are applied to simulated toy experiments, which mimic realistic experimental conditions.Comment: 10 pages, 7 figure

    The Hospitals/Residents Problem with Couples: complexity and integer programming models

    Get PDF
    The Hospitals / Residents problem with Couples (hrc) is a generalisation of the classical Hospitals / Residents problem (hr) that is important in practical applications because it models the case where couples submit joint preference lists over pairs of (typically geographically close) hospitals. In this paper we give a new NP-completeness result for the problem of deciding whether a stable matching exists, in highly restricted instances of hrc, and also an inapproximability bound for finding a matching with the minimum number of blocking pairs in equally restricted instances of hrc. Further, we present a full description of the first Integer Programming model for finding a maximum cardinality stable matching in an instance of hrc and we describe empirical results when this model applied to randomly generated instances of hrc

    Magnon Heat Conductivity and Mean Free Paths in Two-Leg Spin Ladders: A Model-Independent Determination

    Full text link
    The magnon thermal conductivity κmag\kappa_{\mathrm{mag}} of the spin ladders in Sr14Cu24xZnxO41\rm Sr_{14}Cu_{24-x}Zn_xO_{41} has been investigated at low doping levels x=0x=0, 0.125, 0.25, 0.5 and 0.75. The Zn-impurities generate nonmagnetic defects which define an upper limit for lmagl_{\mathrm{mag}} and therefore allow a clear-cut relation between lmagl_{\mathrm{mag}} and κmag\kappa_{\mathrm{mag}} to be established independently of any model. Over a large temperature range we observe a progressive suppression of κmag\kappa_{\mathrm{mag}} with increasing Zn-content and find in particular that with respect to pure Sr14Cu24O41\rm Sr_{14}Cu_{24}O_{41} κmag\kappa_{\mathrm{mag}} is strongly suppressed even in the case of tiny impurity densities where lmag374l_{\mathrm{mag}}\lesssim 374~{\AA}. This shows unambiguously that large lmag3000l_{\mathrm{mag}}\approx 3000~{\AA} which have been reported for Sr14Cu24O41\rm Sr_{14}Cu_{24}O_{41} and La5Ca9Cu24O41\rm La_{5}Ca_9Cu_{24}O_{41} on basis of a kinetic model are in the correct order of magnitude

    Direct measurement of the phase coherence length in a GaAs/GaAlAs square network

    Full text link
    The low temperature magnetoconductance of a large array of quantum coherentloops exhibits Altshuler-Aronov-Spivak oscillations which periodicitycorresponds to 1/2 flux quantum per loop.We show that the measurement of the harmonics content in a square networkprovides an accurate way to determine the electron phase coherence lengthL_ϕL\_{\phi} in units of the lattice length without any adjustableparameters.We use this method to determine L_ϕL\_{\phi} in a network realised from a 2Delectron gas (2DEG) in a GaAS/GaAlAs heterojunction. The temperaturedependence follows a power law T1/3T^{-1/3} from 1.3 K to 25 mK with nosaturation, as expected for 1D diffusive electronic motion andelectron-electron scattering as the main decoherence mechanism.Comment: Additional experimental data in version
    corecore