6 research outputs found

    Transcriptomic signatures of neuronal differentiation and their association with risk genes for autism spectrum and related neuropsychiatric disorders.

    Get PDF
    Genes for autism spectrum disorders (ASDs) are also implicated in fragile X syndrome (FXS), intellectual disabilities (ID) or schizophrenia (SCZ), and converge on neuronal function and differentiation. The SH-SY5Y neuroblastoma cell line, the most widely used system to study neurodevelopment, is currently discussed for its applicability to model cortical development. We implemented an optimal neuronal differentiation protocol of this system and evaluated neurodevelopment at the transcriptomic level using the CoNTeXT framework, a machine-learning algorithm based on human post-mortem brain data estimating developmental stage and regional identity of transcriptomic signatures. Our improved model in contrast to currently used SH-SY5Y models does capture early neurodevelopmental processes with high fidelity. We applied regression modelling, dynamic time warping analysis, parallel independent component analysis and weighted gene co-expression network analysis to identify activated gene sets and networks. Finally, we tested and compared these sets for enrichment of risk genes for neuropsychiatric disorders. We confirm a significant overlap of genes implicated in ASD with FXS, ID and SCZ. However, counterintuitive to this observation, we report that risk genes affect pathways specific for each disorder during early neurodevelopment. Genes implicated in ASD, ID, FXS and SCZ were enriched among the positive regulators, but only ID-implicated genes were also negative regulators of neuronal differentiation. ASD and ID genes were involved in dendritic branching modules, but only ASD risk genes were implicated in histone modification or axonal guidance. Only ID genes were over-represented among cell cycle modules. We conclude that the underlying signatures are disorder-specific and that the shared genetic architecture results in overlaps across disorders such as ID in ASD. Thus, adding developmental network context to genetic analyses will aid differentiating the pathophysiology of neuropsychiatric disorders

    Gene variants associated with obstructive sleep apnea (OSA) in relation to sudden infant death syndrome (SIDS)

    No full text
    Background!#!Both obstructive sleep apnea (OSA) and (at least a fraction of) sudden infant death syndrome (SIDS) are associated with impaired respiration. For OSA, an association with several gene variants was identified. Therefore, our hypothesis is that these polymorphisms might be of relevance in SIDS as well.!##!Methods!#!Twenty-four single nucleotide polymorphisms (SNPs) in 21 candidate genes connected to OSA, were genotyped in a total of 282 SIDS cases and 374 controls. Additionally, subgroups based on factors codetermining the SIDS risk (age, sex, season, and prone position) were established and compared as well.!##!Results!#!Two of the analyzed SNPs showed nominally significant differences between SIDS and control groups: rs1042714 in ADRB2 (adrenoceptor beta 2) and rs1800541 in EDN1 (endothelin 1). In the subgroup analyses, 10 further SNPs gave significant results. Nevertheless, these associations did not survive adjustment for multiple testing.!##!Conclusions!#!Our results suggest that there might be a link between SIDS and OSA and its resulting respiratory and cardiovascular problems, albeit this predisposition might be dependent on the combination with other, hitherto unknown gene variants. These findings may encourage replication studies to get a better understanding of this connection

    Candidate gene variants of the immune system and sudden infant death syndrome.

    No full text
    BACKGROUND: Sudden infant death syndrome (SIDS) causes early infant death with an incidence between 0.5 and 2.5 cases among 1000 live births. Besides central sleep apnea and thermal dysregulation, infections have been repeatedly suggested to be implicated in SIDS etiology. METHODS: To test the risk contribution of common genetic variants related to infection, we genotyped 40 single-nucleotide polymorphisms (SNPs) from 15 candidate genes for association with SIDS in a total of 579 cases and 1124 controls from Germany and the UK in a two-stage case control design. RESULTS: The discovery-stage series (267 SIDS cases and 303 controls) revealed nominally significant associations for variants in interleukin 6 (IL6) (rs1880243), interleukin 10 (IL10) (rs1800871, rs1800872), and mannose-binding lectin 2 (MBL2) (rs930506), and for several other variants in subgroups. Meta-analyses were then performed in adding genotype information from a genome-wide association study of another 312 European SIDS cases and 821 controls. Overall associations were observed for two independent variants in MBL2: rs930506 in a co-dominant model (odds ratio (OR) = 0.82, p = 0.04) and rs1838065 in a dominant model (OR = 1.27, p = 0.03). CONCLUSION: Our study did not replicate published associations of IL10 variants with SIDS. However, the evidence for two independent MBL2 variants in the combined analysis of two large series seems consistent with the hypothesis that infection may play a role in SIDS pathogenesis
    corecore