14,104 research outputs found

    Precision Spectroscopy of Molecular Hydrogen Ions: Towards Frequency Metrology of Particle Masses

    Get PDF
    We describe the current status of high-precision ab initio calculations of the spectra of molecular hydrogen ions (H_2^+ and HD^+) and of two experiments for vibrational spectroscopy. The perspectives for a comparison between theory and experiment at a level of 1 ppb are considered.Comment: 26 pages, 13 figures, 1 table, to appear in "Precision Physics of Simple Atomic Systems", Lecture Notes in Physics, Springer, 200

    Stable marriage and roommates problems with restricted edges: complexity and approximability

    Get PDF
    In the Stable Marriage and Roommates problems, a set of agents is given, each of them having a strictly ordered preference list over some or all of the other agents. A matching is a set of disjoint pairs of mutually acceptable agents. If any two agents mutually prefer each other to their partner, then they block the matching, otherwise, the matching is said to be stable. We investigate the complexity of finding a solution satisfying additional constraints on restricted pairs of agents. Restricted pairs can be either forced or forbidden. A stable solution must contain all of the forced pairs, while it must contain none of the forbidden pairs. Dias et al. (2003) gave a polynomial-time algorithm to decide whether such a solution exists in the presence of restricted edges. If the answer is no, one might look for a solution close to optimal. Since optimality in this context means that the matching is stable and satisfies all constraints on restricted pairs, there are two ways of relaxing the constraints by permitting a solution to: (1) be blocked by as few as possible pairs, or (2) violate as few as possible constraints n restricted pairs. Our main theorems prove that for the (bipartite) Stable Marriage problem, case (1) leads to View the MathML source-hardness and inapproximability results, whilst case (2) can be solved in polynomial time. For non-bipartite Stable Roommates instances, case (2) yields an View the MathML source-hard but (under some cardinality assumptions) 2-approximable problem. In the case of View the MathML source-hard problems, we also discuss polynomially solvable special cases, arising from restrictions on the lengths of the preference lists, or upper bounds on the numbers of restricted pairs

    Thermodynamically self-consistent non-stochastic micromagnetic model for the ferromagnetic state

    Full text link
    In this work, a self-consistent thermodynamic approach to micromagnetism is presented. The magnetic degrees of freedom are modeled using the Landau-Lifshitz-Baryakhtar theory, that separates the different contributions to the magnetic damping, and thereby allows them to be coupled to the electron and phonon systems in a self-consistent way. We show that this model can quantitatively reproduce ultrafast magnetization dynamics in Nickel.Comment: 5 pages, 3 figure

    Modeling Stable Matching Problems with Answer Set Programming

    Get PDF
    The Stable Marriage Problem (SMP) is a well-known matching problem first introduced and solved by Gale and Shapley (1962). Several variants and extensions to this problem have since been investigated to cover a wider set of applications. Each time a new variant is considered, however, a new algorithm needs to be developed and implemented. As an alternative, in this paper we propose an encoding of the SMP using Answer Set Programming (ASP). Our encoding can easily be extended and adapted to the needs of specific applications. As an illustration we show how stable matchings can be found when individuals may designate unacceptable partners and ties between preferences are allowed. Subsequently, we show how our ASP based encoding naturally allows us to select specific stable matchings which are optimal according to a given criterion. Each time, we can rely on generic and efficient off-the-shelf answer set solvers to find (optimal) stable matchings.Comment: 26 page

    Stability of the hard-sphere icosahedral quasilattice

    Get PDF
    The stability of the hard-sphere icosahedral quasilattice is analyzed using the differential formulation of the generalized effective liquid approximation. We find that the icosahedral quasilattice is metastable with respect to the hard-sphere crystal structures. Our results agree with recent findings by McCarley and Ashcroft [Phys. Rev. B {\bf 49}, 15600 (1994)] carried out using the modified weighted density approximation.Comment: 15 pages, 2 figures available from authors upon request, (revtex), submitted to Phys. Rev.

    The Raman Fingerprint of Graphene

    Full text link
    Graphene is the two-dimensional (2d) building block for carbon allotropes of every other dimensionality. It can be stacked into 3d graphite, rolled into 1d nanotubes, or wrapped into 0d fullerenes. Its recent discovery in free state has finally provided the possibility to study experimentally its electronic and phonon properties. Here we show that graphene's electronic structure is uniquely captured in its Raman spectrum that clearly evolves with increasing number of layers. Raman fingerprints for single-, bi- and few-layer graphene reflect changes in the electronic structure and electron-phonon interactions and allow unambiguous, high-throughput, non-destructive identification of graphene layers, which is critically lacking in this emerging research area

    Inverse bremsstrahlung contributions to Drell-Yan like processes

    Full text link
    The contribution of the sub-process γqql1lˉ2\gamma q \to q' l_1\bar{l}_2 in hadron-hadron interactions is considered. It is a part of one-loop electroweak radiative corrections for the Drell-Yan production of lepton pairs at hadron colliders. It is shown that this contribution should be taken into account aiming at the 1% accuracy of the Drell-Yan process theoretical description. Both the neutral and charged current cases are evaluated. Numerical results are presented for typical conditions of LHC experiments.Comment: 11 pages, 8 figure

    Magnetic properties of superconductors with strong spin-orbit coupling

    Full text link
    We study the response of a superconductor with a strong spin-orbit coupling on an external magnetic field. The Ginzburg-Landau free energy functional is derived microscopically for a general crystal structure, both with and without an inversion center, and for an arbitrary symmetry of the superconducting order parameter. As a by-product, we obtain the general expressions for the intrinsic magnetic moment of the Cooper pairs. It is shown that the Ginzburg-Landau gradient energy in a superconductor lacking inversion symmetry has unusual structure. The general formalism is illustrated using as an example CePt3_3Si, which is the first known heavy-fermion superconductor without an inversion center.Comment: Published version, 14 pages, minor correction
    corecore