2,502 research outputs found

    The Role of Interactivity in Local Differential Privacy

    Full text link
    We study the power of interactivity in local differential privacy. First, we focus on the difference between fully interactive and sequentially interactive protocols. Sequentially interactive protocols may query users adaptively in sequence, but they cannot return to previously queried users. The vast majority of existing lower bounds for local differential privacy apply only to sequentially interactive protocols, and before this paper it was not known whether fully interactive protocols were more powerful. We resolve this question. First, we classify locally private protocols by their compositionality, the multiplicative factor k1k \geq 1 by which the sum of a protocol's single-round privacy parameters exceeds its overall privacy guarantee. We then show how to efficiently transform any fully interactive kk-compositional protocol into an equivalent sequentially interactive protocol with an O(k)O(k) blowup in sample complexity. Next, we show that our reduction is tight by exhibiting a family of problems such that for any kk, there is a fully interactive kk-compositional protocol which solves the problem, while no sequentially interactive protocol can solve the problem without at least an Ω~(k)\tilde \Omega(k) factor more examples. We then turn our attention to hypothesis testing problems. We show that for a large class of compound hypothesis testing problems --- which include all simple hypothesis testing problems as a special case --- a simple noninteractive test is optimal among the class of all (possibly fully interactive) tests

    What\u27s Ahead for the Auditors? AICPA Council Meeting, May 6, 1969

    Get PDF
    https://egrove.olemiss.edu/aicpa_assoc/2076/thumbnail.jp

    Construction of asymptotically good low-rate error-correcting codes through pseudo-random graphs

    Get PDF
    A novel technique, based on the pseudo-random properties of certain graphs known as expanders, is used to obtain novel simple explicit constructions of asymptotically good codes. In one of the constructions, the expanders are used to enhance Justesen codes by replicating, shuffling, and then regrouping the code coordinates. For any fixed (small) rate, and for a sufficiently large alphabet, the codes thus obtained lie above the Zyablov bound. Using these codes as outer codes in a concatenated scheme, a second asymptotic good construction is obtained which applies to small alphabets (say, GF(2)) as well. Although these concatenated codes lie below the Zyablov bound, they are still superior to previously known explicit constructions in the zero-rate neighborhood

    Time Data Sequential Processor /TDSP/

    Get PDF
    Time Data Sequential Processor /TDSP/ computer program provides preflight predictions for lunar trajectories from injection to impact, and for planetary escape trajectories for up to 100 hours from launch. One of the major options TDSP performs is the determination of tracking station view periods

    Deep convolutional networks for automated detection of posterior-element fractures on spine CT

    Full text link
    Injuries of the spine, and its posterior elements in particular, are a common occurrence in trauma patients, with potentially devastating consequences. Computer-aided detection (CADe) could assist in the detection and classification of spine fractures. Furthermore, CAD could help assess the stability and chronicity of fractures, as well as facilitate research into optimization of treatment paradigms. In this work, we apply deep convolutional networks (ConvNets) for the automated detection of posterior element fractures of the spine. First, the vertebra bodies of the spine with its posterior elements are segmented in spine CT using multi-atlas label fusion. Then, edge maps of the posterior elements are computed. These edge maps serve as candidate regions for predicting a set of probabilities for fractures along the image edges using ConvNets in a 2.5D fashion (three orthogonal patches in axial, coronal and sagittal planes). We explore three different methods for training the ConvNet using 2.5D patches along the edge maps of 'positive', i.e. fractured posterior-elements and 'negative', i.e. non-fractured elements. An experienced radiologist retrospectively marked the location of 55 displaced posterior-element fractures in 18 trauma patients. We randomly split the data into training and testing cases. In testing, we achieve an area-under-the-curve of 0.857. This corresponds to 71% or 81% sensitivities at 5 or 10 false-positives per patient, respectively. Analysis of our set of trauma patients demonstrates the feasibility of detecting posterior-element fractures in spine CT images using computer vision techniques such as deep convolutional networks.Comment: To be presented at SPIE Medical Imaging, 2016, San Dieg
    corecore