297 research outputs found

    A texture component crystal plasticity finite element method for scalable anisotropy simulations

    No full text
    This progress report introduces a crystal plasticity finite element method which includes and updates the texture of polycrystalline matter for physically based simulations of large strain forming operations. The approach works by directly mapping a set of discrete texture components into a crystal plasticity finite element method. The method is well suited for industrial applications since it is formulated on the basis of existing commercial software solutions. The study gives an overview of the new texture component crystal plasticity finite element method and presents examples

    Influence of Hot Band Annealing on Cold-Rolled Microstructure and Recrystallization in AA 6016

    Get PDF
    The influence of an intermediate heat treatment at the end of hot rolling and before cold rolling on Cube texture formation during the final solution annealing of AA 6016 is investigated. Three hot bands with different initial grain sizes and textures are considered: the first one without annealing before cold rolling, while the other two hot bands are heat treated at 540 °C for 1 hour in air before being cold rolled. One of the heat-treated hot bands was left to cool down in air and the other inside the furnace. Electron-backscatter diffraction (EBSD) maps of the cold-rolled specimens and crystal plasticity simulations show no difference in the amount of Cube remaining in the microstructure at the end of cold rolling for all three specimens. The initial grain size of the hot band has no influence on the Cube texture fraction left in the microstructure at the end of cold rolling for thickness reductions higher than 65 pct. Nevertheless, the grain size of the hot band affects the shape and distribution of the Cube grains left in the microstructure and the kernel average misorientation in the cold-rolled specimens. Moreover, the heat treatment decreases the intensity of the beta fiber components (Brass, Copper, and S) in the hot band and promotes the formation of a cold-rolled microstructure with a low kernel average misorientation. Both these factors lower the probability of preferential Cube nucleation during solution annealing and keep the Cube volume fraction after recrystallization below 10 pct, while it reaches 25 pct without intermediate annealing

    Crystal Plasticity and Fresh Lobster

    No full text
    Mechanics of few crystals Mechanics of many crystals 3D electron microscopy Chitin-composite

    Critical behavior of a traffic flow model

    Full text link
    The Nagel-Schreckenberg traffic flow model shows a transition from a free flow regime to a jammed regime for increasing car density. The measurement of the dynamical structure factor offers the chance to observe the evolution of jams without the necessity to define a car to be jammed or not. Above the jamming transition the dynamical structure factor exhibits for a given k-value two maxima corresponding to the separation of the system into the free flow phase and jammed phase. We obtain from a finite-size scaling analysis of the smallest jam mode that approaching the transition long range correlations of the jams occur.Comment: 5 pages, 7 figures, accepted for publication in Physical Review

    Hysteretic dynamics of domain walls at finite temperatures

    Get PDF
    Theory of domain wall motion in a random medium is extended to the case when the driving field is below the zero-temperature depinning threshold and the creep of the domain wall is induced by thermal fluctuations. Subject to an ac drive, the domain wall starts to move when the driving force exceeds an effective threshold which is temperature and frequency-dependent. Similarly to the case of zero-temperature, the hysteresis loop displays three dynamical phase transitions at increasing ac field amplitude h0h_0. The phase diagram in the 3-d space of temperature, driving force amplitude and frequency is investigated.Comment: 4 pages, 2 figure

    Universal scaling behavior of non-equilibrium phase transitions

    Full text link
    One of the most impressive features of continuous phase transitions is the concept of universality, that allows to group the great variety of different critical phenomena into a small number of universality classes. All systems belonging to a given universality class have the same critical exponents, and certain scaling functions become identical near the critical point. It is the aim of this work to demonstrate the usefulness of universal scaling functions for the analysis of non-equilibrium phase transitions. In order to limit the coverage of this article, we focus on a particular class of non-equilibrium critical phenomena, the so-called absorbing phase transitions. These phase transitions arise from a competition of opposing processes, usually creation and annihilation processes. The transition point separates an active phase and an absorbing phase in which the dynamics is frozen. A systematic analysis of universal scaling functions of absorbing phase transitions is presented, including static, dynamical, and finite-size scaling measurements. As a result a picture gallery of universal scaling functions is presented which allows to identify and to distinguish universality classes.Comment: review article, 160 pages, 60 figures include
    corecore