573 research outputs found
Anisotropy effects in a mixed quantum-classical Heisenberg model in two dimensions
We analyse a specific two dimensional mixed spin Heisenberg model with
exchange anisotropy, by means of high temperature expansions and Monte Carlo
simulations. The goal is to describe the magnetic properties of the compound
(NBu_{4})_{2}Mn_{2}[Cu(opba)]_{3}\cdot 6DMSO\cdot H_{2}O which exhibits a
ferromagnetic transition at . Extrapolating our analysis on the
basis of renormalisation group arguments, we find that this transition may
result from a very weak anisotropy effect.Comment: 8 pages, 10 Postscript figure
Faddeev approach to confined three-quark problems
We propose a method that allows for the efficient solution of the three-body
Faddeev equations in the presence of infinitely rising confinement
interactions. Such a method is useful in calculations of nonrelativistic and
especially semirelativistic constituent quark models. The convergence of the
partial wave series is accelerated and possible spurious contributions in the
Faddeev components are avoided. We demonstrate how the method works with the
example of the Goldstone-boson-exchange chiral quark model for baryons.Comment: 6 page
Interaction of intense vuv radiation with large xenon clusters
The interaction of atomic clusters with short, intense pulses of laser light
to form extremely hot, dense plasmas has attracted extensive experimental and
theoretical interest. The high density of atoms within the cluster greatly
enhances the atom--laser interaction, while the finite size of the cluster
prevents energy from escaping the interaction region. Recent technological
advances have allowed experiments to probe the laser--cluster interaction at
very high photon energies, with interactions much stronger than suggested by
theories for lower photon energies. We present a model of the laser--cluster
interaction which uses non-perturbative R-matrix techniques to calculate
inverse bremsstrahlung and photoionization cross sections for Herman-Skillman
atomic potentials. We describe the evolution of the cluster under the influence
of the processes of inverse bremsstrahlung heating, photoionization,
collisional ionization and recombination, and expansion of the cluster. We
compare charge state distribution, charge state ejection energies, and total
energy absorbed with the Hamburg experiment of Wabnitz {\em et al.} [Nature
{\bf 420}, 482 (2002)] and ejected electron spectra with Laarmann {\em et al.}
[Phys. Rev. Lett. {\bf 95}, 063402 (2005)]
A universal high energy anomaly in angle resolved photoemission spectra of high temperature superconductors - possible evidence of spinon and holon branches
A universal high energy anomaly in the single particle spectral function is
reported in three different families of high temperature superconductors by
using angle-resolved photoemission spectroscopy. As we follow the dispersing
peak of the spectral function from the Fermi energy to the valence band
complex, we find dispersion anomalies marked by two distinctive high energy
scales, E_1=~ 0.38 eV and E_2=~0.8 eV. E_1 marks the energy above which the
dispersion splits into two branches. One is a continuation of the near
parabolic dispersion, albeit with reduced spectral weight, and reaches the
bottom of the band at the gamma point at ~0.5 eV. The other is given by a peak
in the momentum space, nearly independent of energy between E_1 and E_2. Above
E_2, a band-like dispersion re-emerges. We conjecture that these two energies
mark the disintegration of the low energy quasiparticles into a spinon and
holon branch in the high T_c cuprates.Comment: accepted for publication in Phys. Rev. Let
Giant ambipolar Rashba effect in a semiconductor: BiTeI
We observe a giant spin-orbit splitting in bulk and surface states of the
non-centrosymmetric semiconductor BiTeI. We show that the Fermi level can be
placed in the valence or in the conduction band by controlling the surface
termination. In both cases it intersects spin-polarized bands, in the
corresponding surface depletion and accumulation layers. The momentum splitting
of these bands is not affected by adsorbate-induced changes in the surface
potential. These findings demonstrate that two properties crucial for enabling
semiconductor-based spin electronics -- a large, robust spin splitting and
ambipolar conduction -- are present in this material.Comment: 4 pages, 3 figure
Role of preferential weak hybridization between the surface-state of a metal and the oxygen atom in the chemical adsorption mechanism
We report on the chemical adsorption mechanism of atomic oxygen on the Pt(111) surface using angle-resolved-photoemission spectroscopy (ARPES) and density functional calculations. The detailed band structure of Pt(111) from ARPES reveals that most of the bands near the Fermi level are surface-states. By comparing band maps of Pt and O/Pt, we identify that dxz (dyz) and dz2 orbitals are strongly correlated in the surface-states around the symmetry point M and K, respectively. Additionally, we demonstrate that the s- or p-orbital of oxygen atoms hybridizes preferentially with the dxz (dyz) orbital near the M symmetry point. This weak hybridization occurs with minimal charge transfer
Fermi surface and quasiparticle dynamics of Na(x)CoO2 {x=0.7} investigated by Angle-Resolved Photoemission Spectroscopy
We present an angle-resolved photoemission study of Na0.7CoO2, the host
cobaltate of the NaxCoO2.yH2O series. Our results show a large hexagonal-like
hole-type Fermi surface, an extremely narrow strongly renormalized
quasiparticle band and a small Fermi velocity. Along the Gamma to M high
symmetry line, the quasiparticle band crosses the Fermi level from M toward
Gamma consistent with a negative sign of effective single-particle hopping (t
): t is estimated to be about 8 meV which is on the order of exchange coupling
J in this system. This suggests that t ~ J ~ 10 meV is an important energy
scale in the system. Quasiparticles are well defined only in the T-linear
resistivity regime. Small single particle hopping and unconventional
quasiparticle dynamics may have implications for understanding the unusual
behavior of this new class of compounds.Comment: Revised text, Added Figs, Submitted to PR
Three-potential formalism for the three-body scattering problem with attractive Coulomb interactions
A three-body scattering process in the presence of Coulomb interaction can be
decomposed formally into a two-body single channel, a two-body multichannel and
a genuine three-body scattering. The corresponding integral equations are
coupled Lippmann-Schwinger and Faddeev-Merkuriev integral equations. We solve
them by applying the Coulomb-Sturmian separable expansion method. We present
elastic scattering and reaction cross sections of the system both below
and above the threshold. We found excellent agreements with previous
calculations in most cases.Comment: 12 pages, 3 figure
Bilayer splitting and c-axis coupling in bilayer manganites showing colossal magnetoresistance
By performing angle-resolved photoemission spectroscopy of the bilayer
colossal magnetoresistive (CMR) manganite, , we
provide the complete mapping of the Fermi level spectral weight topology. Clear
and unambiguous bilayer splitting of the in-plane 3d band, mapped
throughout the Brillouin zone, and the full mapping of the 3d band
are reported. Peculiar doping and temperature dependencies of these bands imply
that as transition from the ferromagnetic metallic phase approaches, either as
a function of doping or temperature, coherence along the c-axis between planes
within the bilayer is lost, resulting in reduced interplane coupling. These
results suggest that interplane coupling plays a large role in the CMR
transition.Comment: 8 pages, 6 figure
- …