47 research outputs found

    Adaptive resistance of melanoma cells to RAF inhibition via reversible induction of a slowly dividing de鈥恉ifferentiated state

    Get PDF
    Abstract Treatment of BRAF鈥恗utant melanomas with MAP kinase pathway inhibitors is paradigmatic of the promise of precision cancer therapy but also highlights problems with drug resistance that limit patient benefit. We use live鈥恈ell imaging, single鈥恈ell analysis, and molecular profiling to show that exposure of tumor cells to RAF/MEK inhibitors elicits a heterogeneous response in which some cells die, some arrest, and the remainder adapt to drug. Drug鈥恆dapted cells up鈥恟egulate markers of the neural crest (e.g., NGFR), a melanocyte precursor, and grow slowly. This phenotype is transiently stable, reverting to the drug鈥恘a茂ve state within 9 days of drug withdrawal. Transcriptional profiling of cell lines and human tumors implicates a c鈥怞un/ECM/FAK/Src cascade in de鈥恉ifferentiation in about one鈥恡hird of cell lines studied; drug鈥恑nduced changes in c鈥怞un and NGFR levels are also observed in xenograft and human tumors. Drugs targeting the c鈥怞un/ECM/FAK/Src cascade as well as BET bromodomain inhibitors increase the maximum effect (E max) of RAF/MEK kinase inhibitors by promoting cell killing. Thus, analysis of reversible drug resistance at a single鈥恈ell level identifies signaling pathways and inhibitory drugs missed by assays that focus on cell populations

    The mitochondrial ARTS protein promotes apoptosis through targeting XIAP

    No full text
    ARTS is an unusual septin-like mitochondrial protein that was originally shown to mediate TGF-beta-induced apoptosis. Recently, we found that ARTS is also important for cell killing by other pro-apoptotic factors, such as arabinoside, etoposide, staurosporine and Fas. In Drosophila, the IAP antagonists Reaper, Hid and Grim are essential for the induction of virtually all apoptotic cell death. We found that mutations in peanut, which encodes a Drosophila homologue of ARTS, can dominantly suppress cell killing by Reaper, Hid and Grim, indicating that peanut acts downstream or in parallel to these. In mammalian cells, ARTS is released from mitochondria upon pro-apoptotic stimuli and then binds to XIAP. Binding of ARTS to XIAP is direct, as recombinant ARTS and XIAP proteins can bind to each other in vitro. ARTS binding to XIAP is specific and related to its pro-apoptotic function, as mutant forms of ARTS (or related septins) that fail to bind XIAP failed to induce apoptosis. ARTS leads to decreased XIAP protein levels and caspase activation. Our data suggest that ARTS induces apoptosis by antagonizing IAPs

    Steer by Image Technology for Intelligent Reflecting Surface Based on Reconfigurable Metasurface with Photodiodes as Tunable Elements

    No full text
    Lately, metasurface has become an essential and promising component in implementing Intelligent Reflecting Surface (IRS) for 5G and 6G. A novel method that simplifies the ability to reconfigure the metasurface is presented in this paper. The suggested technology uses a PIN photodiode as a tuning element. The desired image is projected on the metasurface’s backside, where the PIN photodiodes are placed and reconfigures the metasurface. The projected image’s color and intensity pattern influence the PIN photodiode’s junction capacitance, which leads to local reflection phase control. This enables the required pattern reflection phase distribution to manipulate the reflection beam, for example, 2D beam steering or focusing, and any other beam forming combination, instead of wiring many digital-to-analog converters (DACs) or FPGA outputs, which bias the standard tuning element such as PIN diode or varactor using a complex RF circuit. Using a PIN photodiode as a tunable element instead of a varactor diode, PIN diode, Liquid Crystal and MEMS allows the changing of the internal junction capacitance without direct contact and thus continuously controlling the reflection phase. In addition, an open circuit work mode with negligible energy consumption can be obtained. This technology can be used to implement metasurface based on discrete or continuous phases and is called Steer by Image (SBI). A full description of the SBI technology using PIN photodiode is presented in this paper

    Correlated occurrence and bypass of frame-shifting insertion-deletions (InDels) to give functional proteins.

    Get PDF
    Short insertions and deletions (InDels) comprise an important part of the natural mutational repertoire. InDels are, however, highly deleterious, primarily because two-thirds result in frame-shifts. Bypass through slippage over homonucleotide repeats by transcriptional and/or translational infidelity is known to occur sporadically. However, the overall frequency of bypass and its relation to sequence composition remain unclear. Intriguingly, the occurrence of InDels and the bypass of frame-shifts are mechanistically related - occurring through slippage over repeats by DNA or RNA polymerases, or by the ribosome, respectively. Here, we show that the frequency of frame-shifting InDels, and the frequency by which they are bypassed to give full-length, functional proteins, are indeed highly correlated. Using a laboratory genetic drift, we have exhaustively mapped all InDels that occurred within a single gene. We thus compared the naive InDel repertoire that results from DNA polymerase slippage to the frame-shifting InDels tolerated following selection to maintain protein function. We found that InDels repeatedly occurred, and were bypassed, within homonucleotide repeats of 3-8 bases. The longer the repeat, the higher was the frequency of InDels formation, and the more frequent was their bypass. Besides an expected 8A repeat, other types of repeats, including short ones, and G and C repeats, were bypassed. Although obtained in vitro, our results indicate a direct link between the genetic occurrence of InDels and their phenotypic rescue, thus suggesting a potential role for frame-shifting InDels as bridging evolutionary intermediates

    Genome-scale identification of transcription factors that mediate an inflammatory network during breast cellular transformation

    Get PDF
    Transient activation of Src oncoprotein in non-transformed, breast epithelial cells can initiate an epigenetic switch to the stably transformed state via a positive feedback loop that involves the inflammatory transcription factors STAT3 and NF-魏B. Here, we develop an experimental and computational pipeline that includes 1) a Bayesian network model (AccessTF) that accurately predicts protein-bound DNA sequence motifs based on chromatin accessibility, and 2) a scoring system (TFScore) that rank-orders transcription factors as candidates for being important for a biological process. Genetic experiments validate TFScore and suggest that more than 40 transcription factors contribute to the oncogenic state in this model. Interestingly, individual depletion of several of these factors results in similar transcriptional profiles, indicating that a complex and interconnected transcriptional network promotes a stable oncogenic state. The combined experimental and computational pipeline represents a general approach to comprehensively identify transcriptional regulators important for a biological process
    corecore