677 research outputs found

    Puff turbulence in the limit of strong buoyancy

    Get PDF
    We provide a numerical validation of a recently proposed phenomenological theory to characterize the space-time statistical properties of a turbulent puff, both in terms of bulk properties, such as the mean velocity, temperature and size, and scaling laws for velocity and temperature differences both in the viscous and in the inertial range of scales. In particular, apart from the more classical shear-dominated puff turbulence, our main focus is on the recently discovered new regime where turbulent fluctuations are dominated by buoyancy. The theory is based on an adiabaticity hypothesis which assumes that small-scale turbulent fluctuations rapidly relax to the slower large-scale dynamics, leading to a generalization of the classical Kolmogorov and Kolmogorov-Obukhov-Corrsin theories for a turbulent puff hosting a scalar field. We validate our theory by means of massive direct numerical simulations finding excellent agreement. This article is part of the theme issue 'Scaling the turbulence edifice (part 2)'

    Turbulent channel flow over an anisotropic porous wall - drag increase and reduction

    Get PDF
    The effect of the variations of the permeability tensor on the close-to-the-wall behaviour of a turbulent channel flow bounded by porous walls is explored using a set of direct numerical simulations. It is found that the total drag can be either reduced or increased by more than 20 % by adjusting the permeability directional properties. Drag reduction is achieved for the case of materials with permeability in the vertical direction lower than the one in the wall-parallel planes. This configuration limits the wall-normal velocity at the interface while promoting an increase of the tangential slip velocity leading to an almost ‘one-component’ turbulence where the low- and high-speed streak coherence is strongly enhanced. On the other hand, strong drag increase is found when high wall-normal and low wall-parallel permeabilities are prescribed. In this condition, the enhancement of the wall-normal fluctuations due to the reduced wall-blocking effect triggers the onset of structures which are strongly correlated in the spanwise direction, a phenomenon observed by other authors in flows over isotropic porous layers or over ribletted walls with large protrusion heights. The use of anisotropic porous walls for drag reduction is particularly attractive since equal gains can be achieved at different Reynolds numbers by rescaling the magnitude of the permeability only

    On-Off Pumping for Drag Reduction in a Turbulent Channel Flow

    Get PDF
    We show that the energy required by a turbulent flow to displace a given amount of fluid through a straight duct in a given time interval can be reduced by modulating in time the pumping power. The control strategy is hybrid: it is passive, as it requires neither a control system nor control energy, but it manipulates how pumping energy is delivered to the system (as in active techniques) to increase the pumping efficiency. Our control employs a temporally periodic pumping pattern, where a short and intense acceleration (in which the pumping system is on) followed by a longer deceleration (in which the pumping system is off) makes the flow alternately visit a quasi-laminar and a turbulent state. The computational study is for a plane channel flow, and employs direct numerical simulations, which present specific computational challenges, for example the highly varying instantaneous value of the Reynolds number, and the importance of discretisation effects. Particular care is devoted to a meaningful definition of drag reduction in the present context. The ability of the forcing to yield significant savings is demonstrated. Since only a small portion of the parameter space is investigated, the best performance of the control technique remains to be assessed

    Transient inverse energy cascade in free surface turbulence

    Get PDF
    We study the statistics of free-surface turbulence at large Reynolds numbers produced by direct numerical simulations in a fluid layer at different thickness with fixed characteristic forcing scale. We observe the production of a transient inverse cascade, with a duration which depends on the thickness of the layer, followed by a transition to three-dimensional turbulence initially produced close to the bottom, no-slip boundary. By switching off the forcing, we study the decaying turbulent regime and we find that it cannot be described by an exponential law. Our results show that boundary conditions play a fundamental role in the nature of turbulence produced in thin layers and give limits on the conditions to produce a two-dimensional phenomenology.Comment: 9 pages, 8 figure

    Role of barriers in the airborne spread of virus-containing droplets: A study based on high-resolution direct numerical simulations

    Get PDF
    State-of-the-art direct numerical simulations are exploited to study the role of barriers on the airborne spread of virus-containing droplets. Our study is motivated by recent findings pointing to the key role of turbulence in dictating the final fate of virus-containing droplets in violent human exhalations. Here, all active scales of motion have been explicitly taken into account, including their interplay with the droplet evaporation process occurring once droplets are emitted in a drier ambient air, and accounting for the time-varying droplet inertia due to the water loss via evaporation. We show that barriers commonly used to mitigate the airborne spread of the virus cause nontrivial dynamical effects influencing the final reach of the virus-containing droplets, not always being beneficial to this aim. These conclusions do depend on the relative humidity of the ambient condition, and in particular whether the ambient humidity is above or below the so-called efflorescence relative humidity. Our findings provide a physically based answer to the question on how effective barriers are to protect people from airborne virus transmission in indoor environments
    • …
    corecore