19 research outputs found

    Charakterisierung der endosomalen Membranproteine DdLmp B/C aus Dictyostelium discoideum und biochemische Analyse der Stimulierung der bakteriellen Kinase YopO aus Yersinia enterocolitica durch Aktin

    Get PDF
    Die vorliegende Arbeit hatte zum Ziel, (i) die regulatorische Funktion bestimmter integraler Membranproteine im Dictyostelium Zytoskelett und (ii) die biochemische Interaktion einer Kinase eines infektiösen Bakteriums mit Aktin aus der Wirtszelle genauer zu analysieren. (i) Die ubiquitären Mitglieder der CD36/LIMPII-Familie sind integrale Membranproteine, die als Lipidrezeptoren und Zelladhäsionsproteine in der Plasmamembran oder - mit bisher unbekannter Funktion - in Membranen endosomaler Vesikel vorkommen. In Dictyostelium discoideum führte die Inaktivierung eines lysosomalen Membranproteins aus dieser Gruppe zur Suppression des Phänotyps einer Profilin-minus Mutante. Im Zuge der vollständigen Sequenzierung des D. discoideum-Genoms konnte festgestellt werden, daß es neben diesem DdLmpA noch die beiden weiteren homologen Proteine DdLmpB und DdLmpC gibt. Da der Mechanismus der Suppression des Profilin-minus Phänotyps ungeklärt ist, wurden die beiden Isoformen im Rahmen der vorliegenden Arbeit genauer charakterisiert. Sowohl für DdLmpB wie auch für DdLmpC konnte die familientypische Membran-Topologie einer Haarnadelstruktur nachgewiesen werden. Dabei weist die zentrale, lumenale Domäne beider Proteine zahlreiche Glykosylierungen auf. Durch Immunofluoreszenz und Saccharosegradienten wurde die Lokalisation der drei Isoformen an endolysosomalen Vesikeln nachgewiesen. Es stellte sich dabei heraus, daß die drei DdLmp-Proteine in unterschiedlichen Vesikelpopulationen auftraten. Auch “pulse-chase“-Experimente mit TRITC-Dextran und nachfolgender Markierung der Vesikel mit DdLmp-spezifischen Antikörpern ergaben unterscheidbare Zeitmuster für die Rekrutierung der Membranproteine in Vesikeln. Die für DdLmpA oft beobachtete Kolokalisation mit Makropinosomen konnte z.B. für DdLmpB und DdLmpC nur selten festgestellt werden. Nach zahlreichen Versuchen und der Konstruktion von verschiedenen Vektoren konnte am Ende der praktischen Arbeiten eine DdLmpB-minus Mutante im Wildtyp-Hintergrund isoliert werden. (ii) Im zweiten Teil der Arbeit wurde die in der Literatur beschriebene Interaktion zwischen Aktin und der Kinase YopO, die durch Yersinia enterocolitica als Effektorprotein in die Wirtszelle transloziert wird, biochemisch genauer untersucht. Es konnte festgestellt werden, daß G-Aktin und nicht F-Aktin für die Aktiverung der YopO-Kinase verantwortlich ist. Dabei tritt Nichtmuskel-Aktin im Vergleich zum Muskel-Aktin als ein deutlich besserer Aktivator von YopO auf. Obwohl die aktivierte Kinase in vivo das Aktin-Zytoskelett beeinflußt, ist Aktin offensichtlich kein Substrat von YopO. Mittels Fluoreszenzspektroskopie konnte gezeigt werden, daß sowohl die native Kinase YopO als auch das durch Punktmutation inaktivierte YopO K269A die Polymerisierungskinetik von Aktin behindern. Für eine mutmaßliche Aktin-Binderegion von 20 Aminosäuren aus dem C-terminalen Ende konnte hingegen kein Effekt beobachtet werden. Der Einfluß von aktinbindenden Proteinen, aktinmodifizierenden Substanzen und YopO-bindenden GTPasen auf die Aktivierung der Kinase durch Aktin deutet darauf hin, dass die Aktivität der Kinase in der Wirtszelle nicht nur durch Aktin alleine, sondern auch durch weitere Zytoskelett-Komponenten reguliert wird

    Novel genetically encoded fluorescent probes enable real-time detection of potassium in vitro and in vivo

    Get PDF
    Changes in intra-and extracellular potassium ion (K+) concentrations control many important cellular processes and related biological functions. However, our current understanding of the spatiotemporal patterns of physiological and pathological K+ changes is severely limited by the lack of practicable detection methods. We developed K+-sensitive genetically encoded, Forster resonance energy transfer-(FRET) based probes, called GEPIIs, which enable quantitative real-time imaging of K+ dynamics. GEPIIs as purified biosensors are suitable to directly and precisely quantify K+ levels in different body fluids and cell growth media. GEPIIs expressed in cells enable time-lapse and real-time recordings of global and local intracellular K+ signals. Hitherto unknown Ca2+-triggered, organelle-specific K+ changes were detected in pancreatic beta cells. Recombinant GEPIIs also enabled visualization of extracellular K+ fluctuations in vivo with 2-photon microscopy. Therefore, GEPIIs are relevant for diverse K+ assays and open new avenues for live-cell K+ imaging

    Sigma-1 Receptor Modulation by Ligands Coordinates Cancer Cell Energy Metabolism

    No full text
    Sigma-1 receptor (S1R) is an important endoplasmic reticulum chaperone with various functions in health and disease. The purpose of the current work was to elucidate the involvement of S1R in cancer energy metabolism under its basal, activated, and inactivated states. For this, two cancer cell lines that differentially express S1R were treated with S1R agonist, (+)-SKF10047, and antagonist, BD1047. The effects of the agonist and antagonist on cancer energy metabolism were studied using single-cell fluorescence microscopy analysis of real-time ion and metabolite fluxes. Our experiments revealed that S1R activation by agonist increases mitochondrial bioenergetics of cancer cells while decreasing their reliance on aerobic glycolysis. S1R antagonist did not have a major impact on mitochondrial bioenergetics of tested cell lines but increased aerobic glycolysis of S1R expressing cancer cell line. Our findings suggest that S1R plays an important role in cancer energy metabolism and that S1R ligands can serve as tools to modulate it

    Near-UV Light Induced ROS Production Initiates Spatial Ca2+ Spiking to Fire NFATc3 Translocation

    No full text
    Ca2+-dependent gene regulation controls several functions to determine the fate of the cells. Proteins of the nuclear factor of activated T-cells (NFAT) family are Ca2+ sensitive transcription factors that control the cell growth, proliferation and insulin secretion in β-cells. Translocation of NFAT proteins to the nucleus occurs in a sequence of events that starts with activating calmodulin-dependent phosphatase calcineurin in a Ca2+-dependent manner, which dephosphorylates the NFAT proteins and leads to their translocation to the nucleus. Here, we examined the role of IP3-generating agonists and near-UV light in the induction of NFATc3 migration to the nucleus in the pancreatic β-cell line INS-1. Our results show that IP3 generation yields cytosolic Ca2+ rise and NFATc3 translocation. Moreover, near-UV light exposure generates reactive oxygen species (ROS), resulting in cytosolic Ca2+ spiking via the L-type Ca2+ channel and triggers NFATc3 translocation to the nucleus. Using the mitochondria as a Ca2+ buffering tool, we showed that ROS-induced cytosolic Ca2+ spiking, not the ROS themselves, was the triggering mechanism of nuclear import of NFATc3. Collectively, this study reveals the mechanism of near-UV light induced NFATc3 migration

    The contribution of uncoupling protein 2 to mitochondrial Ca2+ homeostasis in health and disease – A short revisit

    No full text
    Considering the versatile functions attributed to uncoupling protein 2 (UCP2) in health and disease, a profound understanding of the protein's molecular actions under physiological and pathophysiological conditions is indispensable. This review aims to revisit and shed light on the fundamental molecular functions of UCP2 in mitochondria, with particular emphasis on its intricate role in regulating mitochondrial calcium (Ca2+) uptake. UCP2′s modulating effect on various vital processes in mitochondria makes it a crucial regulator of mitochondrial homeostasis in health and disease.ISSN:1567-724

    Generation of Red-Shifted Cameleons for Imaging Ca2+ Dynamics of the Endoplasmic Reticulum

    No full text
    Cameleons are sophisticated genetically encoded fluorescent probes that allow quantifying cellular Ca2+ signals. The probes are based on Förster resonance energy transfer (FRET) between terminally located fluorescent proteins (FPs), which move together upon binding of Ca2+ to the central calmodulin myosin light chain kinase M13 domain. Most of the available cameleons consist of cyan and yellow FPs (CFP and YFP) as the FRET pair. However, red-shifted versions with green and orange or red FPs (GFP, OFP, RFP) have some advantages such as less phototoxicity and minimal spectral overlay with autofluorescence of cells and fura-2, a prominent chemical Ca2+ indicator. While GFP/OFP- or GFP/RFP-based cameleons have been successfully used to study cytosolic and mitochondrial Ca2+ signals, red-shifted cameleons to visualize Ca2+ dynamics of the endoplasmic reticulum (ER) have not been developed so far. In this study, we generated and tested several ER targeted red-shifted cameleons. Our results show that GFP/OFP-based cameleons due to miss-targeting and their high Ca2+ binding affinity are inappropriate to record ER Ca2+ signals. However, ER targeted GFP/RFP-based probes were suitable to sense ER Ca2+ in a reliable manner. With this study we increased the palette of cameleons for visualizing Ca2+ dynamics within the main intracellular Ca2+ store

    pH-Lemon, a Fluorescent Protein-Based pH Reporter for Acidic Compartments

    No full text
    Distinct subcellular pH levels, especially in lysosomes and endosomes, are essential for the degradation, modification, sorting, accumulation, and secretion of macromolecules. Here, we engineered a novel genetically encoded pH probe by fusing the pH-stable cyan fluorescent protein (FP) variant, mTurquoise2, to the highly pH-sensitive enhanced yellow fluorescent protein, EYFP. This approach yielded a ratiometric biosensor—referred to as pH-Lemon—optimized for live imaging of distinct pH conditions within acidic cellular compartments. Protonation of pH-Lemon under acidic conditions significantly decreases the yellow fluorescence while the cyan fluorescence increases due to reduced Förster resonance energy transfer (FRET) efficiency. Because of its freely reversible and ratiometric responses, pH-Lemon represents a fluorescent biosensor for pH dynamics. pH-Lemon also shows a sizable pH-dependent fluorescence lifetime change that can be used in fluorescence lifetime imaging microscopy as an alternative observation method for the study of pH in acidic cellular compartments. Fusion of pH-Lemon to the protein microtubule-associated protein 1A/1B-light chain 3B (LC3B), a specific marker of autophagic membranes, resulted in its targeting within autolysosomes of HeLa cells. Moreover, fusion of pH-Lemon to a glycophosphatidylinositol (GPI) anchor allowed us to monitor the entire luminal space of the secretory pathway and the exoplasmic leaflet of the plasma membrane. Utilizing this new pH probe, we revealed neutral and acidic vesicles and substructures inside cells, highlighting compartments of distinct pH throughout the endomembrane system. These data demonstrate, that this novel pH sensor, pH-Lemon, is very suitable for the study of local pH dynamics of subcellular microstructures in living cells

    Presenilin-1 Established ER-Ca2+ Leak: a Follow Up on Its Importance for the Initial Insulin Secretion in Pancreatic Islets and β-Cells upon Elevated Glucose

    No full text
    BACKGROUND/AIMS: In our recent work, the importance of GSK3β-mediated phosphorylation of presenilin-1 as crucial process to establish a Ca2+ leak in the endoplasmic reticulum and, subsequently, the pre-activation of resting mitochondrial activity in β-cells was demonstrated. The present work is a follow-up and reveals the importance of GSK3β-phosphorylated presenilin-1 for responsiveness of pancreatic islets and β-cells to elevated glucose in terms of cytosolic Ca2+ spiking and insulin secretion. METHODS: Freshly isolated pancreatic islets and the two pancreatic β-cell lines INS-1 and MIN-6 were used. Cytosolic Ca2+ was fluorometrically monitored using Fura-2/AM and cellular insulin content and secretion were measured by ELISA. RESULTS: Our data strengthened our previous findings of the existence of a presenilin-1-mediated ER-Ca2+ leak in β-cells, since a reduction of presenilin-1 expression strongly counteracted the ER Ca2+ leak. Furthermore, our data revealed that cytosolic Ca2+ spiking upon administration of high D-glucose was delayed in onset time and strongly reduced in amplitude and frequency upon siRNA-mediated knock-down of presenilin-1 or the inhibition of GSK3β in the pancreatic β-cells. Moreover, glucose-triggered initial insulin secretion disappeared by depletion from presenilin-1 and inhibition of GSK3β in the pancreatic β-cells and isolated pancreatic islets, respectively. CONCLUSION: These data complement our previous work and demonstrate that the sensitivity of pancreatic islets and β-cells to glucose illustrated as glucose-triggered cytosolic Ca2+ spiking and initial but not long-lasting insulin secretion crucially depends on a strong ER Ca2+ leak that is due to the phosphorylation of presenilin-1 by GSK3β, a phenomenon that might be involved in the development of type 2 diabetes
    corecore