2,805 research outputs found
Status of Nucleon Resonances with Masses
We discuss different interpretations of peaks observed a few years ago by
Tatischeff et al. in missing mass spectra of the reaction , which
were declared as new exited nucleon states with small masses. A study of the
possible production of such states in the process by analyzing the invariant mass spectrum of
is proposed. It is shown that the data, obtained recently at MAMI-B, can allow
to analyze this process and to get information about an existence of exited
nucleon states with small masses.Comment: 4 pages, 2 figures, LaTeX with ws-p8-50x6-00.cls. Talk presented at
the NSTAR2001 Workshop, Mainz, Germany, March 7-10, 200
Inelastic semiclassical Coulomb scattering
We present a semiclassical S-matrix study of inelastic collinear
electron-hydrogen scattering. A simple way to extract all necessary information
from the deflection function alone without having to compute the stability
matrix is described. This includes the determination of the relevant Maslov
indices. Results of singlet and triplet cross sections for excitation and
ionization are reported. The different levels of approximation -- classical,
semiclassical, and uniform semiclassical -- are compared among each other and
to the full quantum result.Comment: 9 figure
Fast coarsening in unstable epitaxy with desorption
Homoepitaxial growth is unstable towards the formation of pyramidal mounds
when interlayer transport is reduced due to activation barriers to hopping at
step edges. Simulations of a lattice model and a continuum equation show that a
small amount of desorption dramatically speeds up the coarsening of the mound
array, leading to coarsening exponents between 1/3 and 1/2. The underlying
mechanism is the faster growth of larger mounds due to their lower evaporation
rate.Comment: 4 pages, 4 PostScript figure
Ionization of clusters in intense laser pulses through collective electron dynamics
The motion of electrons and ions in medium-sized rare gas clusters (1000
atoms) exposed to intense laser pulses is studied microscopically by means of
classical molecular dynamics using a hierarchical tree code. Pulse parameters
for optimum ionization are found to be wavelength dependent. This resonant
behavior is traced back to a collective electron oscillation inside the charged
cluster. It is shown that this dynamics can be well described by a driven and
damped harmonic oscillator allowing for a clear discrimination against other
energy absorption mechanisms.Comment: 4 pages (4 figures
Threshold detachment of negative ions by electron impact
The description of threshold fragmentation under long range repulsive forces
is presented. The dominant energy dependence near threshold is isolated by
decomposing the cross section into a product of a back ground part and a
barrier penetration probability resulting from the repulsive Coulomb
interaction. This tunneling probability contains the dominant energy variation
and it can be calculated analytically based on the same principles as Wannier's
description for threshold ionization under attractive forces. Good agreement is
found with the available experimental cross sections on detachment by electron
impact from , and .Comment: 4 pages, 4 figures (EPS), to appear in Phys.Rev.Lett, Feb. 22nd, 199
Separation and identification of dominant mechanisms in double photoionization
Double photoionization by a single photon is often discussed in terms of two
contributing mechanisms, {\it knock-out} (two-step-one) and {\it shake-off}
with the latter being a pure quantum effect. It is shown that a quasi-classical
description of knock-out and a simple quantum calculation of shake-off provides
a clear separation of the mechanisms and facilitates their calculation
considerably. The relevance of each mechanism at different photon energies is
quantified for helium. Photoionization ratios, integral and singly differential
cross sections obtained by us are in excellent agreement with benchmark
experimental data and recent theoretical results.Comment: 4 pages, 5 figure
Ionization of clusters in strong X-ray laser pulses
The effect of intense X-ray laser interaction on argon clusters is studied
theoretically with a mixed quantum/classical approach. In comparison to a
single atom we find that ionization of the cluster is suppressed, which is in
striking contrast to the observed behavior of rare-gas clusters in intense
optical laser pulses. We have identified two effects responsible for this
phenomenon: A high space charge of the cluster in combination with a small
quiver amplitude and delocalization of electrons in the cluster. We elucidate
their impact for different field strengths and cluster sizes.Comment: 4 pages, 4 figure
- …