1,640 research outputs found
Photo sensor array technology development
The development of an improved capability photo sensor array imager for use in a Viking '75 type facsimile camera is presented. This imager consists of silicon photodiodes and lead sulfide detectors to cover a spectral range from 0.4 to 2.7 microns. An optical design specifying filter configurations and convergence angles is described. Three electronics design approaches: AC-chopped light, DC-dual detector, and DC-single detector, are investigated. Experimental and calculated results are compared whenever possible using breadboard testing and tolerance analysis techniques. Results show that any design used must be forgiving of the relative instability of lead sulfide detectors. A final design using lead sulfide detectors and associated electronics is implemented by fabrication of a hybrid prototype device. Test results of this device show a good agreement with calculated values
In situ planetary mineralogy using simultaneous time resolved fluorescence and Raman spectroscopy
Micro-Raman spectroscopy is one of the primary methods of mineralogical analysis in the laboratory, and more recently in the field. Because of its versatility and ability to interrogate rocks in their natural form (Figure 1), it is one of the frontrunners for the next generation of in situ instruments designed to explore adiverse set of solar system bodies (e.g. Mars, Venus, the Moon, and other primitive bodies such as asteroids and the Martian moons Phobos and Deimos), as well as for pre-selection of rock and soil samples for cache and return missions
Allendeite and Hexamolybdenum: Two New Ultra-Refractory Minerals in Allende and Two Missing Links
During our nano-mineralogy investigation
of the Allende meteorite, we discovered two
new minerals that occur as micro- to nano-crystals in
refractory inclusions: Allendeite, Sc_4Zr_3O_(12), a new Scand
Zr-rich oxide; and hexamolybdenum, (Mo,Ru,Fe),
a Mo-dominant alloy. Allendeite, which may be an
important ultra-refractory carrier linking Zr-, Sc- oxides
and the more common Sc-, Zr-enriched clinopyroxenes
(Cpx) in CAIs, hosts perovskite (Pv), spinel
(Sp), Os-Ir-W-Mo alloys, and hexamolybdenum. The
observation of two structurally and chemically distinct
highly refractory, low-Pt alloy minerals not associated
with Fe-Ni alloys provides the first direct physical
evidence for at least two separate carriers of the highly
refractory metals in CAIs. Hexamolybdenum links Osrich
and Pt-rich meteoritic alloys and may be a precursor
of the latter. Both new minerals have been approved
by the Commission on New Minerals, Nomenclature
and Classification of the International Mineralogical
Association (IMA 2007-027, 029)
The Influence of Oxygen Fugacity and Cooling Rate on the Crystallization of Ca-Al Inclusions from Allende
Although there appears to be general agreement that some coarse-grained Ca-Al-rich inclusions (CAIs) from Allende passed through a molten or partially molten stage in their evolution, there are several competing hypotheses to account for the formation of the liquid phase in CAIs (e.g., 1-4). Studies of the phase equilibria of CAI compositions can help distinguish between these mechanisms
for generating liquids in CAIs
A Dihydroxo-Bridged Ferric Dimer
Recent investigations have produced a large number
of dimeric complexes containing the oxo-bridged
structural unit Fe_2O^(4+).
Here we report the isolation and characterization of [Fe (pic)_2OH]_2 which apparently
is the first example of a crystalline iron(III) dimer which
utilizes dihydroxo bridging in its coordination structure
Magneto-chemical studies with a new ultrasensitive superconducting quantum magnetometer
A magnetometer utilizing quantum superconductivity
as the basis for the flux sensor element
has been designed and used for biochemical susceptibility
measurements in the temperature range
from 1.5°K to 300°K. The sensitivity and reproducibility
of this instrument have been tested by
measurements on small amounts of material of well-known
susceptibilities. Using this instrument the
temperature dependence of the magnetic susceptibilities
of oxy- and metaquohemerythrin have been
measured and for the first time their anti-ferromagnetic
components have been unambigiously resolved.
From this data the exchange coupling
constants between the two high-spin iron (III)
atoms in each subunit have been determined to be
-77 and -134 cm^(-1) respectively
Stability of hydroxylated minerals on Mars: A study on the effects of exposure to ultraviolet radiation
The density and composition of the Martian atmosphere allow solar ultraviolet photons with wavelengths as short as 190 nm to reach the surface. We investigate the hypothesis that this UV radiation is capable of inducing the release of water from iron oxyhydroxide minerals resulting in the formation of oxide phases. These experiments, which utilize a quadrupole mass spectrometer to monitor the water vapor pressure above mineral samples during cyclic exposure to ultraviolet radiation, offer 5 to 6 orders of magnitude greater sensitivity than previous attempts to establish and quantify this process. We find no evidence that UV photons are capable of liberating OH from the crystal lattice of minerals, and we set a minimum ultraviolet radiation-induced dehydroxylation time of 10^8 years for removal of this structural OH from mineral particles at the Martian surface. The overturning timescales for surface fines are likely to be shorter than this lower limit for exposure time. Thus we conclude that UV-stimulated dehydroxylation is not a significant process at the Martian surface and that iron oxyhydroxides, if formed during an earlier water-rich environment, should still be found on Mars today. The lack of clear evidence for iron oxyhydroxides at the Martian surface further suggests that Mars' surface was never warm and wet for a long enough period of time for Earth-like weathering to have occurred
Forest Management Guideline Development Through Consensus: Important Factors to Consider
Consensus forums are one method of dealing with controversial natural resource issues. Minnesota regulators learned numerous important lessons when they used a consensus-based approach to develop voluntary site-level forest management guidelines. These include: 1) take active steps to facilitate information sharing among team leaders, 2) select team members who can effectively represent their group's perspective, who are solution-oriented, and who can help shape a compromise, 3) be prepared for problems that will arise so that they don't bog down the process, 4) use field tours as a mechanism to educate participants and to test the practicality of proposed guidelines, and 5) build in flexibility to accommodate the range of considerations which affect guideline application
Lead-tellurium oxysalts from Otto Mountain near Baker, California, USA: XII. Andychristyite, PbCu^(2+)Te^(6+)O_5(H_2O), a new mineral with hcp stair-step layers
Andychristyite, PbCu^(2+)Te^(6+)O_5(H_2O), is a new tellurate mineral from Otto Mountain near Baker, California, USA. It occurs in vugs in quartz in association with timroseite. It is interpreted as having formed from the partial oxidation of primary sulfides and tellurides during or following brecciation of quartz veins. Andychristyite is triclinic, space group P1, with unit-cell dimensions a = 5.322(3), b = 7.098(4), c = 7.511(4) Å, α = 83.486(7), β = 76.279(5), γ = 70.742(5)°, V = 260.0(2) Å^3 and Z = 2. It forms as small tabular crystals up to ∼50 µm across, in sub-parallel aggregates. The colour is bluish green and the streak is very pale bluish green. Crystals are transparent with adamantine lustre. The Mohs hardness is estimated at between 2 and 3. Andychristyite is brittle with an irregular fracture and one perfect cleavage on {001}. The calculated density based on the empirical formula is 6.304 g/cm^3. The mineral is optically biaxial, with large 2V, strong dispersion, and moderate very pale blue-green to medium blue-green pleochroism. The electron microprobe analyses (average of five) provided: PbO 43.21, CuO 15.38, TeO_3 35.29, H_2O 3.49 (structure), total 97.37 wt.%. The empirical formula (based on 6 O apfu) is: Pb_(0.98)C u^(2+)_(0.98)Te^(6+)_(1.02)O_6H_(1.96). The Raman spectrum exhibits prominent features consistent with the mineral being a tellurate, as well as an OH stretching feature confirming a hydrous component. The eight strongest powder X-ray diffraction lines are [d_(obs) in Å(I)(hkl)]: 6.71(16)(010), 4.76(17)(110), 3.274(100)(120,102,012), 2.641(27)(102, 211, 112), 2.434(23)(multiple), 1.6736(17)(multiple), 1.5882(21)(multiple) and 1.5133(15)(multiple). The crystal structure of andychristyite (R_1 = 0.0165 for 1511 reflections with Fo > 4σF) consists of stair-step-like hcp polyhedral layers of Te^(6+)O_6 and Cu^(2+)O_6 octahedra parallel to {001}, which are linked in the [001] direction by bonds to interlayer Pb atoms. The structures of eckhardite, bairdite, timroseite and paratimroseite also contain stair-step-like hcp polyhedral layers
Camaronesite, [Fe^(3+)(H_2O)_2(PO_3OH)]_2(SO_4)•1-2H_2O, a new phosphate-sulfate from the Camarones Valley, Chile, structurally related to taranakite
Camaronesite (IMA 2012-094), [Fe^(3+)(H_2O)_2(PO_3OH)]_2(SO_4)•1-2H_2O, is a new mineral from near the village of Cuya in the Camarones Valley, Arica Province, Chile. The mineral is a low-temperature, secondary mineral occurring in a sulfate assemblage with anhydrite, botryogen, chalcanthite, copiapite, halotrichite, hexahydrite, hydroniumjarosite, pyrite, römerite, rozenite and szomolnokite. Lavender-coloured crystals up to several mm across form dense intergrowths. More rarely crystals occur as drusy aggregates of tablets up to 0.5 mm in diameter and 0.02 mm thick. Tablets are flattened on {001} and exhibit the forms {001}, {104}, {015} and {018}. The mineral is transparent with white streak and vitreous lustre. The Mohs hardness is 2½, the tenacity is brittle and the fracture is irregular, conchoidal and stepped. Camaronesite has one perfect cleavage on {001}. The measured and calculated densities are 2.43(1) and 2.383 g/cm^3, respectively. The mineral is optically uniaxial (+) with ω = 1.612(1) and ε = 1.621(1) (white light). The pleochroism is O (pale lavender) > E (colourless). Electron-microprobe analyses provided Fe_2O_331.84, P_2O_529.22, SO_315.74, H_2O 23.94 (based on O analyses), total 100.74 wt.%. The empirical formula (based on 2 P a.p.f.u.) is: Fe_(1.94)(PO_3OH)_2(S_(0.96)O_4)(H_2O)_4•1.46H_2O. The mineral is slowly soluble in concentrated HCl and extremely slowly soluble in concentrated H_2SO_4. Camaronesite is trigonal, R32, with cell parameters:a = 9.0833(5), c = 42.944(3) Å, V = 3068.5(3) Å3 and Z = 9. The eight strongest lines in the X-ray powder diffraction pattern are [d_(obs) Å (I)(hkl)]: 7.74(45)(101), 7.415(100)(012), 4.545(72)(110), 4.426(26)(018), 3.862(32)(021,202,116), 3.298(93)(027,119), 3.179(25)(208) and 2.818(25)(1•1•12,125). In the structure of camaronesite (R_1 = 2.28% for 1138 F_o > 4σF), three types of Fe octahedra are linked by corner sharing with (PO_3OH) tetrahedra to form polyhedral layers perpendicular to c with composition [Fe^(3+)(H_2O)_2(PO_3OH)]. Two such layers are joined through SO_4 tetrahedra (in two half-occupied orientations) to form thick slabs of composition [Fe^(3+)(H_2O)_2(PO_3OH)]_2(SO_4). Between the slabs are partially occupied H_2O groups. The only linkages between the slabs are hydrogen bonds. The most distinctive component in the structure consists of two Fe octahedra linked to one another by three PO_4 tetrahedra yielding an [Fe_2(PO_4)_3] unit. This unit is also the key component in the sodium super-ionic conductor (NASICON) structure and has been referred to as the lantern unit. The polyhedral layers in the structure of camaronesite are similar to those in the structure of taranakite. The Raman spectrum exhibits peaks consistent with sulfate, phosphate, water and OH groups
- …