80 research outputs found
A Multi Objective Evolutionary Algorithm based on Decomposition for a Flow Shop Scheduling Problem in the Context of Industry 4.0
Under the novel paradigm of Industry 4.0, missing operations have arisen as a result of the increasingly customization of the industrial products in which customers have an extended control over the characteristics of the final products. As a result, this has completely modified the scheduling and planning management of jobs in modern factories. As a contribution in this area, this article presents a multi objective evolutionary approach based on decomposition for efficiently addressing the multi objective flow shop problem with missing operations, a relevant problem in modern industry. Tests performed over a representative set of instances show the competitiveness of the proposed approach when compared with other baseline metaheuristics.Fil: Rossit, Diego Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería; ArgentinaFil: Nesmachnow, Sergio. Universidad de la República; UruguayFil: Rossit, Daniel Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería; Argentin
Scheduling in additive manufacturing problems
Scheduling problems in additive manufacturing is a problem that can involve considerably morecomplexity than single-stage scheduling problems, since machines can process more than one partwith different geometries simultaneously [1]. To achieve efficiency in terms of the used capacity of themachine, it is necessary to group as many parts as possible in a single job. Since the use of themachines in terms of time depends on the job being processed, how parts are grouped within eachjob comes critical. This implies that the resolution of the nesting problem will have a direct impact onthe objective function of the jobs Schedule. In this work, the objective function to be minimized is theTotal Completion time, wich is obtained by the sum of the completion time of each job. The biggestdifficulty is that the problem is NP-Hard [2], so a purely mathematical approach is insufficient. For thisreason, a hybrid method is proposed that allows linking the benefits of an approach based onmathematical programming but enhanced by heuristic methods. In this way, heuristics are developedthat address the nesting problem incorporating knowledge about the nature of the problem, such asthe influence of the parameters “height” and volume” of the parts in the definition of the Jobs; and thestructure of its solutions. Then, using mathematical programming, solve the scheduling in paralleladditive manufacturing machines. For the nesting stage, several heuristics were proposed andcompared, showing that those heuristics that best captured the influence of the parameterscontributed more to solving the problem.Fil: Rodriguez, Jeanette. Universidad Nacional del Sur. Departamento de Ingeniería; ArgentinaFil: Rossit, Daniel Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería; ArgentinaXXI Latin Ibero-American Conference on Operations Research CLAIO 2022Buenos AiresArgentinaUniversidad de Buenos Aires. Facultad de Ciencias Exactas y Naturale
Evaluation of Truck Balance Locations for Hazardous Materials Using Empirical Approach: Case Study in Argentina
The logistical problems that companies must face tend to have conflicting interests between customers and service providers, which makes them difficult to solve. In turn, when the activities involve the transport of hazardous materials, the problem becomes critical in security terms, and makes logistics operations even more difficult. In the hazardous materials transportation literature, problems related to the routing of vehicles and the geographic location of supply or service centres are often addressed. However, there are not many studies related to the study of the loading, unloading and weighing operations of trucks that handle hazardous materials within industrial plants. That is why this work presents a case study of the installation of a new truck balance in an industrial plant in Argentina. To do this, the internal logistics operation and the current state of the plant's infrastructure are analyzed. A detailed study of the alternatives for the location of the balance was carried out following the criteria set by the company's management and the problem was solved using an empirical weighting method coordinated with the heads of the Supply Chain Department. A satisfactory solution was obtained.Fil: Sequeira, Lucas. Universidad Nacional del Sur. Departamento de Ingeniería; ArgentinaFil: Rossit, Daniel Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería; Argentin
Proposal and Comparative Study of Evolutionary Algorithms for Optimum Design of a Gear System
This paper proposes a novel metaheuristic framework using a Differential Evolution (DE) algorithm with the Non-dominated Sorting Genetic Algorithm-II (NSGA-II). Both algorithms are combined employing a collaborative strategy with sequential execution, which is called DE-NSGA-II. The DE-NSGA-II takes advantage of the exploration abilities of the multi-objective evolutionary algorithms strengthened with the ability to search global mono-objective optimum of DE, that enhances the capability of finding those extreme solutions of Pareto Optimal Front (POF) difficult to achieve. Numerous experiments and performance comparisons between different evolutionary algorithms were performed on a referent problem for the mono-objective and multi-objective literature, which consists of the design of a double reduction gear train. A preliminary study of the problem, solved in an exhaustive way, discovers the low density of solutions in the vicinity of the optimal solution (mono-objective case) as well as in some areas of the POF of potential interest to a decision maker (multi-objective case). This characteristic of the problem would explain the considerable difficulties for its resolution when exact methods and/or metaheuristics are used, especially in the multi-objective case. However, the DE-NSGA-II framework exceeds these difficulties and obtains the whole POF which significantly improves the few previous multi-objective studies.Fil: Méndez Babey, Máximo. Universidad de Las Palmas de Gran Canaria; EspañaFil: Rossit, Daniel Alejandro. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; ArgentinaFil: González, Begoña. Universidad de Las Palmas de Gran Canaria; EspañaFil: Frutos, Mariano. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Económicas y Sociales del Sur. Universidad Nacional del Sur. Departamento de Economía. Instituto de Investigaciones Económicas y Sociales del Sur; Argentin
Diseño y desarrollo de estructuras de planificación eficientes a través de técnicas de simulación y optimización aplicables a entornos productivos complejos
La tesis aborda problemas de secuenciamiento en entornos productivos del tipo flow shop en los que se retira la condición de ordenamientos permutativos. Este tipo de problemas se encuentran inmersos dentro de los sistemas de Planificación y Control de la Producción que dan soporte en la toma de decisiones a las organizaciones o empresas que producen bienes del tipo manufactura. Como primera aproximación al problema se presenta una revisión exhaustiva de la literatura científica sobre problemas flow shop no permutativos (NPFS). De esta forma se pudo enmarcar la tesis doctoral en la literatura de la temática y se definió concretamente la contribución a la literatura del tema. Como resultado del estudio de la literatura se planteó abordar los problemas NPFS desde una perspectiva que permitiera estudiar la estructura de las soluciones para así poder compararlos con los resultados de los problemas flow shop permutativos (PFS). Primeramente, se propuso estudiar los problemas NPFS con makespan como función objetivo bajo un nuevo enfoque de planificación. Para ello se utilizará la metodología de lotes de transferencia o lot streaming, la cual modifica el problema clásico de secuenciamiento incorporando nuevas variables de decisión al problema a optimizar. Las nuevas variables de decisión van asociadas al dimensionamiento del tamaño del lote de producción. Este estudio reportó resultados para NPFS y PFS bastante similares, aunque el caso NPFS obtuvo leves mejoras para las instancias más grandes. No obstante, el esfuerzo computacional requerido para resolver el caso NPFS fue considerablemente mayor que requerido para PFS. A partir de estos resultados, se planteó un estudio conceptual de las soluciones NPFS y PFS para el caso de dos trabajos en términos de caminos críticos (conjunto de actividades que definen el makespan) que posibilitaron caracterizar ambos conjuntos de soluciones de forma no-paramétrica, es decir, independizarse de los parámetros que definen un escenario. De este estudio de caminos críticos, se pudieron analizar una serie de propiedades y definir criterios de dominancia entre las soluciones NPFS y PFS que permitirían reducir el espacio factible. A su vez, el estudio no-paramétrico permitió realizar una serie experimentaciones computacionales innovadoras, que dieron sustento al desarrollo de algunas hipótesis sobre la relación de las soluciones NPFS y PFS para el caso de que los problemas sean evaluados en escenarios paramétricamente definidos. Para evaluar estas hipótesis se implementaron experimentaciones paramétricas a través de programación matemática, las cuales validaron las hipótesis planteadas.This dissertation focuseson non-permutation scheduling problems in flow shop production settings. These problems, proper of systems of Production Planning and Control, are central to the decision making processes in organizations or firms producing manufactured goods. A first look into these problems requires a thorough review of the scientific literature on non-permutation flow shop (NPFS) problems. This review provides a background on this issue and defines precisely the contribution of this thesis to the literature. A novel and interesting approach to address NPFS problems is by studying the structure of the solutions, comparing it to the corresponding structure of permutation flow shop (PFS) problems. In this light, we study NPFS problems where makespan is minimized considering a special planning technique involving lot streaming. This technique modifies the regular scheduling problem adding new decision variables, related to production lot sizing. From the implementation of lot streaming on these problems we obtain new results. The main conclusion is that the makespans of NPFS and PFS problems are quite similar, although NPFS yields a better makespan for larger instances. The computational effort required by NPFS problems is much larger than that of solving PFS ones. Up from these results, we develop a new approach to the analysis of solutions to NPFS and PFS problems. We center on the two jobs case, and on the concept of critical path (enumerating the set of activities that defines makespan). This allows the non-parametric characterization of the solutions, freeing them from the dependence on particular parameters. We analyze a family of propertiesthat yield dominance criteria for the comparison between NPFS and PFS solutions, reducing, in general, the number of feasible solutions. In addition, this non-parametric method allows the design of novel computational experimental frameworks, yielding newinsights on the relation between NPFS and PFS solutions for parametric scenarios. To assess these hypotheses, we obtain via an application of mathematical programming a set of parametric results that we test in experiments that confirm the aforementioned hypotheses.Fil: Rossit, Daniel Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentin
The argentinian forest sector: Opportunities and challenges in supply chain management
The rise in the worldwide demand of forest products of the last decades predicts an expansion of the forest harvesting industry. In this context, the Argentinian Northeastern Region (NEA) is considered a promising land since the local forest harvesting industry has one of the largest growing rates in the world. Despite its potential, this region faces some challenging obstacles: budget shortage, trade barriers and poor logistic infrastructure. For instance, traditionally the forest products are delivered by truck, which is from three to five times more expensive than other means of transport, like maritime or river transport. This is why in this paper, after a revision of the most recent advances in the worldwide supply chain management practices in the forest industry, recommendations for Argentina in order to overcome its main drawbacks in the forest sector are presented.Fil: Broz, Diego Ricardo. Universidad Nacional de Misiones. Facultad de Ciencias Forestales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Rossit, Daniel Alejandro. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; ArgentinaFil: Rossit, Diego Gabriel. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Económicas y Sociales del Sur. Universidad Nacional del Sur. Departamento de Economía. Instituto de Investigaciones Económicas y Sociales del Sur; ArgentinaFil: Cavallin, Antonella. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Económicas y Sociales del Sur. Universidad Nacional del Sur. Departamento de Economía. Instituto de Investigaciones Económicas y Sociales del Sur; Argentin
Solving a flow shop scheduling problem with missing operations in an Industry 4.0 production environment
Industry 4.0 is a modern approach that aims at enhancing the connectivity between the different stages of the production process and the requirements of consumers. This paper addresses a relevant problem for both Industry 4.0 and flow shop literature: the missing operations flow shop scheduling problem. In general, in order to reduce the computational effort required to solve flow shop scheduling problems only permutation schedules (PFS) are considered, i.e., the same job sequence is used for all the machines involved. However, considering only PFS is not a constraint that is based on the real-world conditions of the industrial environments, and it is only a simplification strategy used frequently in the literature. Moreover, non-permutation (NPFS) orderings may be used for most of the real flow shop systems, i.e., different job schedules can be used for different machines in the production line, since NPFS solutions usually outperform the PFS ones. In this work, a novel mathematical formulation to minimize total tardiness and a resolution method, which considers both PFS and (the more computationally expensive) NPFS solutions, are presented to solve the flow shop scheduling problem with missing operations. The solution approach has two stages. First, a Genetic Algorithm, which only considers PFS solutions, is applied to solve the scheduling problem. The resulting solution is then improved in the second stage by means of a Simulated Annealing algorithm that expands the search space by considering NPFS solutions. The experimental tests were performed on a set of instances considering varying proportions of missing operations, as it is usual in the Industry 4.0 production environment. The results show that NPFS solutions clearly outperform PFS solutions for this problem.Fil: Rossit, Daniel Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería; ArgentinaFil: Toncovich, Adrián Andrés. Universidad Nacional del Sur. Departamento de Ingeniería; ArgentinaFil: Rossit, Diego Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; ArgentinaFil: Nesmachnow, Sergio. Facultad de Ingeniería; Urugua
Lot streaming Permutation Flow shop with energy awareness
In this work, the flow shop scheduling problem with energy awareness is approached with lot-streaming strategies. Energy consumption is modeled within the objective function, together with the makespan, by means of a normalized and weighted sum. Thus, reducing energy consumption guides the optimization process. For lot streaming approaches mathematical models are provided and assessed. The results showed that lot-streaming is an efficient strategy to address this problem, allowing to improve both makespan and total energy consumption compared to the problem without lot-streaming. In turn, the selection of processing speeds for each sublot was incorporated, which improved the strategy yielding the best quality solutions.Fil: Florencia D'Amico. Universidad Nacional del Sur. Departamento de Ingeniería; ArgentinaFil: Rossit, Daniel Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; ArgentinaFil: Frutos, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Económicas y Sociales del Sur. Universidad Nacional del Sur. Departamento de Economía. Instituto de Investigaciones Económicas y Sociales del Sur; Argentin
A data-driven scheduling approach to smart manufacturing
Traditional methods of scheduling are mostly based on the use of pieces of information directly related to the performance of schedules, as for instance processing times, delivery dates, etc., assuming that the production system is operating normally. In the case of malfunctions, the literature concentrates on the ensuing corrective operations, like scheduling with machine breakdowns or under remanufacturing considerations. These event-driven approaches are mainly used in dynamic scheduling or rescheduling systems. Unlike those, Smart Manufacturing and Industry 4.0 production environments integrate the physical and decision-making aspects of manufacturing processes in order to achieve their decentralization and autonomy. On these grounds we propose a data-driven architecture for scheduling, in which the system has real time access to data. Then, scheduling decisions can be made ahead of time, on the basis of more information. This promising approach is based on the architecture of cyber-physical systems, with a data-driven engine that uses, in particular, Big Data techniques to extract vital information for Industry 4.0 systems.Fil: Rossit, Daniel Alejandro. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; ArgentinaFil: Tohmé, Fernando Abel. Universidad Nacional del Sur. Departamento de Economía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; ArgentinaFil: Frutos, Mariano. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Económicas y Sociales del Sur. Universidad Nacional del Sur. Departamento de Economía. Instituto de Investigaciones Económicas y Sociales del Sur; Argentin
Application of data mining to forest operations planning
In Uruguay, mechanized forestry harvesting for industrial purposes is carried out using modern equipment. They are capable of record a wealth of information that can be exploited in the decision making process and improve operations. Some approaches from data mining field, as decision trees, are an alternative to analyze large volumes of data and determine incidence factors. In this work, it was proposed to analyze how different variables of the forest harvest (DBH, species, shift and operator) affect the productivity of a forest harvester. Data were collected automatically by a forest harvester working on plantations of Eucalyptus spp. in Uruguay. The results show that DBH is the most influential factor in productivity.Fil: Rossit, Daniel Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería; ArgentinaFil: Olivera, Alejandro. Universidad de la República; UruguayFil: Viana Céspedes, Víctor. Universidad de la República; UruguayFil: Broz, Diego Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Misiones. Facultad de Ciencias Forestales; Argentina1st International Conference on Agro Big Data and Decision Support Systems in AgricultureMontevideoUruguayUniversidad de la RepúblicaUniversitat de Lleid
- …