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1. Introduction

In recent decades, global awareness of the need
to change to more sustainable industrial systems has 
grown [1]. This would reduce the negative impacts of 
climate change by reducing carbon emissions [2] [3]. 
One of the most direct ways to reduce these emis-
sions is to reduce energy consumption, since reduc-
ing energy consumption reduce the combustion of 
fossil fuels [4]. Within the production of manufac-
tured products, the reduction of energy consumption 
can be approached from three different perspectives 
[5] [6]:

1. At the machinery level: the aim is to develop
 more efficient machines that require less energy.
2. At the product level: the aim is to design a
 product from the point of view of energy saving.  
 This is not very feasible in medium and small  
 companies as it requires a lot of investment.
3. At the factory level: you can choose decision
 models that support and contribute to energy 
savings.

This work is framed in this last perspective, seek-
ing to develop decision support tools that contribute 
to energy saving, specifically considering scheduling 
problems in the production planning process [7]. In-
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cluding energy considerations in solving scheduling 
problems proved to be very effective in reducing en-
ergy consumption, achieving reductions of up to 80% 
[8]. The work of Mouzon et al. [9], was a pioneered 
work in this field, where the authors developed a 
study of dispatch rules, and then a multi-objective 
model that allowed solving scheduling by consid-
erably reducing energy consumption for CNC ma-
chines. A critical aspect when trying to reduce energy 
consumption, it is to minimize the maximum power 
consumed by the production process, since when the 
power is increased, the energy consumption increas-
es more than proportionally. Therefore, seeking to 
minimize the maximum peak of energy consumption 
contributes to energy efficiency, and consequently to 
minimize carbon emissions [10]. This approach of 
seeking to minimize the peak of energy intake was 
first addressed by Fang et al. [11]. In this work, the au-
thors developed multi-objective mathematical mod-
els that sought to minimize the peak of consumption 
and the makespan in a flow shop manufacturing con-
figuration. These models considered the processing 
speed of each operation as a decision variable, thus 
energy consumption depends directly on scheduling 
solution. In Fang et al. [12] they deepened their study 
in flow shop configurations with energy consumption 
considerations, by developing strengthened math-
ematical formulations, as well as combinatorial ap-
proaches that allowed solving the problem optimally. 
In turn, in that work, they considered two variants of 
flow shop, one without intermediate storage between 
successive stages (if there is no intermediate storage, 
a machine cannot be released until the next machine 
is released, this is known as blocking flow shop), and 
another variant with unlimited intermediate storage. 
Bruzzone et al. [10] addressed the problem of mini-
mizing the peak of energy consumption, but in flexi-
ble flow shop systems (more than one machine in par-
allel per stage). In this article, the authors proposed a 
resolution approach based on two stages, where the 
first stage solve scheduling seeking to minimize a tra-
ditional objective function such as makespan. Then, 
in a second stage, the proposed method reschedules 
the start of activities in order to reduce the peak of 
energy consumption. On the other hand, Mansouri 
et al. [13] used a multi-objective approach to solve 
a 2-stage flow shop system. The objectives that the 
authors considered were makespan and total energy 
consumption, and they solved the problem using the 
ε-constraints method.

Given that many of the articles that address this 
problem do so by making the start and/or end of 
operations more flexible, as well as the execution of 

that operation, the study of lot streaming strategies is 
promising. That is why in this work it is proposed to 
solve the flow shop problem with energy consider-
ations through lot-streaming strategies. Lot-streaming 
allows production batches to be divided into sublots, 
which can advance from one workstation to another 
without waiting for the entire batch to be processed 
[14]. In this way, the production of the same batch 
can be overlapped in more than one production 
stage, favoring the efficiency of the system by re-
ducing production cycle times [15]. Lot streaming 
has proven to be a valuable approach to improving 
scheduling problem solutions. It has been shown that 
lot streaming allows to efficiently solve rescheduling 
in problems that are considered machine breakdown 
[16]. Even in flow shop problems with sequence-de-
pendent setups, the advantages of using an approach 
based on lot streaming were also evidenced [17]. On 
the other hand, it allows to reduce makespan times 
considerably for non-permutation flow shop systems 
[18], as well as to deal efficiently with complex flow 
shop systems where one of the stages production 
works in batch mode [19]. In this work, it proposed 
to extend these lot streaming applications to solve 
scheduling in flow shop systems with energy consid-
erations. The intention is to take advantage of the 
ability to make the processing times of each produc-
tion lot more flexible by being able to subdivide it, 
and thus, make scheduling more flexible to minimize 
energy consumption without penalizing regular ob-
jective function, as makespan.

The rest of the work is organized as follows. In 
section 2 the problem to be studied is described 
and all the mathematical models are introduced. In 
section 3 the experiments to be carried out are de-
scribed. In section 4 the results obtained are present-
ed and discussed, while in section 5 the conclusions 
of the work are presented.

2. The problem and mathematical
models 

This section presents the problem in detail, pre-
senting the incorporation of lot-streaming processes 
into the schedule calculation. Firstly, we introduce 
Figure 1, where an illustrative example of 3 jobs 
and 5 machines flow shop scheduling problem with 
makespan as optimization criterion is depicted. In 
the top part of Figure 1 is presented the regular solu-
tion, meanwhile in the bottom part is presented the 
solution with lot streaming implemented. It is easy 
to see the positive impact that lot streaming provides 
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regarding makespan criterion, since the lot streaming 
solution (bottom part of Figure 1) has a makespan 
lower than 1400 and the regular solution (top part of 
Figure 1) has a makespan of around 2200.

2.1 Problem description

The problem studied in this work is framed within 
the line of scheduling with energy considerations [9]. 
These problems seek to solve the classic scheduling 
problem [7]: assign the jobs or tasks to the available 
resources seeking to minimize some objective func-
tion. In this case we will consider flow shop settings, 
where the sequence of operations of a given job is 
the same for all jobs [20]. By incorporating energy 
considerations, it seeks to minimize the environ-
mental impact generated by production operations 
through two alternatives, or to minimize total ener-
gy consumption [8] or the maximum peak of ener-
gy consumption [11]. This work seeks to minimize 
total energy consumption. This has reason to be in 
environments where the speed of processing tasks 
is variable, and the energy consumption is linked to 
that speed variability [13]. Therefore, the operations 
considered here are not constant tasks, thus, they can 
be incorporated as decision variables to the problem, 
which allows increasing the efficiency of the schedule 
obtained (there are greater degrees of freedom), but 
at the same time implies an increase in its complexity 

[12] [5].
On the other hand, the innovation of including 

lot-streaming strategies to the problem is proposed. 
The lot-streaming consists of the subdivision of the 
production batches into sublots, so that they can ad-
vance in operation even when the complete lot has 
not finished its processing in the previous operation 
[21]. In this way, it is possible that two successive 
machines in the flow shop are processing the same 
job or lot (divided into sublots) simultaneously [14]. 
Incorporating lot-streaming into the problem allows 
increasing flexibility in the job assignment process, 
taking advantage of the improvements reported by 
lot-streaming when studying the makespan, leaving 
greater margin for minimizing total energy consump-
tion.

2.2 Mathematical models

In this section the three mathematical models 
studied are presented. The first is the most general 
case, flow shop with energy considerations (FSS+EA), 
then, the first lot-streaming approach to this problem 
(SBS+EA) is incorporated. Finally, the lot-streaming 
is incorporated into the energy consideration by al-
lowing the processing speed to be modified for each 
sublot (SBSi+EA).

Figure 1. Illustrative example of 5 machines and 3 jobs flow shop scheduling problem
with makespan optimization criterion, the top part represents regular flow shop solution

and the bottom part represents a lot streaming flow shop solution
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2.2.1 Flow Shop with Energy Awareness 
(FSS+EA)

The first model presented deals with the classic 
flow shop scheduling problem with energy awareness 
(FSS+EA). This model seeks to sequence the jobs 
complying with the production conditions (that is, all 
the operations that must be carried out in each job are 
respected), but also, defining the processing speed 
of each operation. Therefore, both the sequencing 
and the selection of processing speeds intervene in 
the calculation of the objective function that contem-
plates the makespan and energy consumption. These 
objectives are addressed simultaneously through a 
normalized weighted sum. Furthermore, as a realis-
tic feature of the problem, preparation and removal 
times were considered for each job. The mathemati-
cal model is presented below.

Sets:

M: machines; k = 1, 2, …, m.

J: Jobs or lots; j = 1, 2, …, n.

V: processing speed; l = 1, 2, 3.

Parameters:

G: positive value (large enough).

m: number of machines.

n: number of jobs.

Uj: number of units of product j to be processed 
(lot size of product j).

TSj,k: setup time of job j at machine k.

Pj,k: standard amount of workload of processing a 
unit of product j at machine k.

RTj,k: time to release machine k after processing 
one unit or more of product j (independent of the 
number of units processed).

Vl1l: speed factor for selected speed l, it can take 
the values 1.2, 1 y 0.8.

Vl2l: energy conversion factor for processing 
speed l. It takes the values 1.5, 1, 0.6 for fast, 
normal and slow, respectively.

MOk: energy conversion factor for machine idle 
time k.

PMk: power of machine k.

Variables:

Cj,k : completion time of job j at machine k.

Xj,j ’: binary variable, which is 1 if job j is 
processed before j ’, 0 otherwise ( j ≠ j ’).
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Yj,k,l : binary variable, which is 1 if job j is 
processed at speed l at machine k, 0 otherwise.

Cmax: makespan.

TEC : total energetic consumption.

The objective function Z is presented in equation 
(1), where it is shown that it is made up of makespan 
(Cmax) and energy consumption (TEC). Also, in 
equation (1), the normalization and weights of Z is 
shown for each of the terms. The objective function 
weights considered for this work are 0.5. The calcula-
tion of Cmax is carried out according to equation (2). 
In equation (3) the idle time TOk is calculated. And 
in equation (4) the energy consumed in the process-
ing is obtained, considering the speeds selected to 
process each job, as well as the consumption during 
idle time. Then, the constraints are presented in equa-
tions (5) - (9). Constraint (5) sequences the jobs for 
the first machine. In restriction (6) it is ensured that 
each job respects its precedence conditions between 
operations. Constraint (7) sequences the different 
jobs, if job j is processed before job j’ for machine k, 
then that order is maintained for all machines. Con-
straint (8) ensures that the reverse ordering (j’ before 
j) is not valid. Finally, restriction (9) ensures that a
single speed is selected for each operation.

2.2.2 Lot Streaming Flow Shop with Energy 
Awareness (SBS+EA)

Based on the FSS+EA model, the lot-streaming 

strategy is incorporated into the scheduling process, 
giving rise to the SBS+EA model. In this model, each 
job j, made up of Uj units, is divided into f sublots of 
size si,j. When considering sublots, it is also neces-
sary to consider that the transfer times increase their 
impact, since it does not occur once for the entire 
batch Uj but rather f times (one for each si,j). On the 
other hand, incorporating lot-streaming multiplies 
the number of times the machines must be loaded 
and unloaded (one for each sublot, instead of one for 
the entire lot), as well as the transfer or transfer times 
of the parts. Here are only the indices and parame-
ters that are affected by this addition.

Sets:

I: sublots: i = 1, 2, …, f.

Parameters:

f: number of sublots.

si,j : size of sublot i of job j (number of units 
contained in the sublot).

FTj : fixed transfer time of job j (applies to each 
sublot without depending on the number of units 
contained in it).

RTj,k : unload time associated with machine k 
after processing a sublot of job j in machine k.

Variables:

Ci,j,k : completion time of sublot i of job j at 
machine k.

Breakdown of Z (equation 1) in terms of SBS+EA 
model:
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The Cmax calculation now considers the com-
pletion of the last sublot processed in the last ma-
chine m (equation 10). Also the idle time is modified 
(equation 11), since the operations are dependent 
on the size of the sublot si,j. The same for the total 
energy consumed (equation 12). By incorporating 
lot-streaming, some restrictions of the problem are 
modified. In constraint (13) the first sublot of job j is 
sequenced, and the transfer times between two con-
secutive machines are considered. In restriction (14) 
it is verified that each sublot respects the precedence 
of operations of the flow shop. In restriction (15) the 
capacity required in the first machine for the first sub-
lot is met. The ordering of the sublots of the same 
job j is obtained by restriction (16). However, by not 
allowing intermixing, the sequencing between jobs is 
performed by the same variable as in the previous 
model, although in this case restriction (17) incorpo-
rates the proportionality of the processing according 
to si,j.

2.2.3 Lot Streaming Flow Shop with Energy 
Awareness and Processing Speed Indexed in 
Sublots (SBSi+EA)

In this model, the possibility of varying the pro-
cessing speed for each sublot is added to the sublot 
model (previously it was kept fixed for all the sublots 
of the same job) (SBSi+EA). Based on the SBS+EA 
model, a new variable is incorporated to define the 
processing speeds.

Variables:

Yi,j,k,l : binary variable, is 1 if sublot i of job j is 
processed at speed l at machine k, 0 otherwise.

Breakdown of Z (equation 1), in terms of  
SBSi+EA:

The idle time TOk is modified (equation 18), 
by incorporating the variable Yi,j,k,l. The same hap-
pens with energy consumption (TEC) (equation 19). 
Then, restrictions (20)-(25) have a similar interpreta-
tion to that of the SBS + EA model (equations (13)-
(17)), with the difference that now the duration of the 

processing can be modified for each sublot i of each 
job j. This last model naturally includes an increase 
in the number of binary variables, which makes their 
resolution difficult.
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3. Experimental design

The experimental design seeks to compare the
models and show empirically if the incorporation of 
lot-streaming is advantageous when addressing flow 
shop scheduling problems with energy awareness. 
For this, the studies that have used similar approach-
es were taken as a starting point [10] [13]. Regarding 
the parameterization related to lot-streaming, it was 
considered similar works from literature [18] [19]. 
The sizes of the problems studied considered 5 and 
10 machines, and 3, 5 and 7 jobs were used for each 
number of machines. For models SBS+EA and SB-
Si+EA, f was set in, 2, 3, 4 and 5. Then, for model 
FSS+EA there are 6 different problem size, while for 
SBS+EA and SBSi+EA, there are 24 different prob-
lem size. On the other hand, for the parameters de-
fined in section 2.2.1 for the different models, the 
following parameterization was used:

Uj : uniform distribution regarding [4;24] * 5. 
Thus, jobs lots remain within 20 and 120 units, 
as in [13].

si,j : is obtained by dividing Uj by f.

TSj,k : uniform distribution [1;25].

Pj,k : uniform distribution [1;5] (it corresponds to 
processing one each unit of Uj).

FTj : uniform distribution [1;4].

RTj,k : uniform distribution [2;6].

Vl1l : it can take one of (1.2, 1, 0.8). This factor 
applies to Pj,k, then, it can be standar time (1), fast 
(1.2) or slow (0.8).

Vl2l : it can take on of (1.5, 1, 0.6). It depends 
on Vl1l.
MOk: 0.05.
PMk: 60 KW.

For each size of the problem, 5 data sets were gen-
erated. Each of these data sets was solved by the three 
models. The experiments were carried out on an 
AMD A6-7310 APU with AMD Radeon R4 Graph-
ics computer with 8GB of RAM. All the models were 
implemented in Pyomo [22] and GUROBI 8.1.1 was 
used as a solver. SolverStudio [23] was used for data 
post-processing.

4. Results

In this section we present the results obtained
by the experimentation proposed in section 3. The 
numerical results regarding the objective function 

are summarized in Table 1. Table 1 shows the rel-
ative improvements, expressed in percentages, of 
the SBS+EA and SBSi+EA models with respect to 
FSS+EA, based on the value of FSS+EA. The data is 
grouped by problem size (number of machines and 
jobs), as well as by elements of the objective func-
tion (Cmax  and TEC). In turn, the values for each 
SBS+EA and SBSi+EA models are distributed ac-
cording to the number of sublots used in each case. 
Considering the results of the makespan, it is ob-
served that lot streaming is an effective technique to 
improve the performance of the system, since all the 
data in Table 1 are positive (it implies that the Cmax 
of SBS+EA and SBSi+EA are lower than those of 
FSS+EA for the same problem). Even more, if it is 
analyzed more carefully, the improvements are real-
ly significant, since the minimum of the reductions 
is higher than 22%, in the case of 5J and 5M and 2 
sublots. Meanwhile, the maximum reduction of the 
makespan reaches values higher than 50% (3J and 
10M). These results support the idea of analyzing 
lot streaming as a scheduling strategy. On the other 
hand, when looking at the last of the rows of Table 1, 
where the average values for each model are raised, 
it is observed that SBSi+EA is better than SBS+EA, 
achieving reductions of 37.4% against 36.8% achieved 
by SBS+EA, although the difference is not very sig-
nificant. Regarding the impact of the number sublots, 
it is observed that, for both models, incorporating a 
greater number of sublots improves the performance 
of the model, both for SBS+EA and SBSi+EA. These 
improvements represent more than 10% reduction 
in makespan when comparing the result of 2 sublots 
with that of 5 sublots. Naturally, this incorporation 
of a greater number of sublots has its counter effect 
that it adds binary variables, so that the resolution of 
a problem with 5 sublots is more computationally ex-
pensive. This will be discussed in more detail later.

On the other hand, if the TEC is analyzed in 
Table 1 it is observed that, again, lot-streaming is an 
effective technique to improve the performance of 
the system, since all the values in Table 1 are posi-
tive, except for a single value. The only value that is 
negative for the TEC, is in the SBS + EA model in 
the column of 2 sublots, for the 5J and 5M problem, 
which is -0.2%. This negative value is associated to 
the approach used in the modeling of the objective 
function, since, when modeled through a weighted 
and normalized sum, the value of Z may be more 
influenced by the makespan than by the TEC. This 
can be verified by looking at the value of makespan 
for the same problem, it is observed that there is a re-
duction of 22.8% (much higher than -0.2% of TEC). 



32 D' Amico et al.

International Journal of Industrial Engineering and Management Vol 12 No 1 (2021)

Thus, when using a single value of Z, the value of 
TEC is absorbed by the makespan. However, the rest 
of the values are all positive, which implies that the 
models based on lot streaming manage to improve 
energy consumption compared to not implementing 
them. There is even a more noticeable difference be-
tween models than in the case of makespan, for the 
TEC the SBS + EA obtains an average improvement 
of 6.7% compared to the FSS + EA, while the SBSi + 
EA improves the FSS + EA by a 11.7%.

All these results are illustrated in Figure 2. Fig-
ure 2 shows how the SBS+EA and SBSi+EA models 
improve with respect to FSS+EA. Again, the results 
are grouped by number of sublots used in each ex-
periment. In Figure 2, the higher the bar, the higher 
the improvement over FSS+EA model (the better the 
performance of the lot-streaming models over non 
lot-streaming model). Then, it is observed that the 
model that enables to set the processing speed for 
each sublot (SBSi+EA) has higher bars than the mod-
el that enable to set the processing speed for each 
lot, i.e. all sublots share the same processing speed 
(SBS+EA) for all the cases. This difference is great-
er for the case of TEC, meaning that indexing pro-
cessing speed for each sublot has a greater impact 
in TEC than what it has in makespan. Another ob-
servation that can be made is that for small number 
of sublots the effects of both models, SBS+EA and 
SBSi+EA, are rather similar, but when the number 
of sublot increase, the bars are larger (i.e. larger im-
provements over FSS+EA model) and more diverse 
between them. This supports the idea that having 

the possibility to use more sublots in production 
enables better results in performance. However, lot 
streaming models needs to model more “production 
units” (several sublots instead of one lot) requiring 
more variables than regular flow shop model, which 
usually affects the computational capacity in solving 
the problem. The counterpart to the analysis of the 
results obtained by the different models is to ana-
lyze the computational cost of each of the models. 
That is, to analyze benefits and cost of each of the 
models. We have already shown the benefits, then, 
we have to consider the costs of the model. For this, 
we present Table 2. Table 2 shows for each of the 
3 models presented the number of restrictions, vari-
ables (continuous and discrete), the average running 
time and the GAP reached by the software in case of 
reaching the maximum of 3600 secs (relative to the 
best relaxed solution). As a first comment, it can be 
said that the SBSi+EA model is the most computa-
tionally expensive, since it is the one that saturates 
the 3600 second limit the most times. This means 
that the solver does not reach the optimal solution of 
the problem (or does not reach the full verification of 
it). These results reveals that the model with the best 
performance in objective function, has the greater 
computational cost. Then, the SBS+EA is the second 
model in computational cost, and the cheapest is the 
FSS+EA. This order also coincides with the objec-
tive function values, the second in performance rate 
is SBS+EA and the poorest model is FSS+EA. Nat-
urally, this computational cost increases as the num-
ber of jobs increases. But in the case of models with 

Figure 2. Lot Streaming improvements over FSS+EA model
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Table 1. Improvement percentage of the SBS+EA and SBSi+EA models with respect to FSS+EA, for each problem and value of f. 
Ref: each problem is identified by the number of jobs (J) and machines (M), e.g. 3J 5M, represents the problem of  
3 jobs and 5 machines

Values for 2 sublots

Cmax / SBS+EA Cmax / SBSi+EA TEC / SBS+EA TEC / SBSi+EA

3J 5M 28.40% 28.40% 3.10% 9.50%

3J 10M 34.70% 35.20% 8.90% 11.20%

5J 5M 22.80% 22.90% -0.20% 8.10%

5J 10M 31.60% 31.70% 3.40% 8.20%

7J 5M 26.10% 26.80% 2.90% 11.10%

7J 10M 28.20% 29.30% 3.40% 6.80%

Values for 3 sublots

Cmax / SBS+EA Cmax / SBSi+EA TEC / SBS+EA TEC / SBSi+EA

3J 5M 36.20% 36.30% 5.40% 12.50%

3J 10M 45.50% 46.30% 12.30% 15.50%

5J 5M 28.30% 29.10% 2.20% 8.90%

5J 10M 40.80% 41.80% 7.70% 11.50%

7J 5M 31.40% 31.70% 2.60% 10.60%

7J 10M 36.10% 37.20% 6.70% 10.50%

Values for 4 sublots

Cmax / SBS+EA Cmax / SBSi+EA TEC / SBS+EA TEC / SBSi+EA

3J 5M 39.50% 39.90% 8.40% 13.90%

3J 10M 51.00% 51.70% 13.60% 17.40%

5J 5M 30.90% 31.50% 3.20% 9.60%

5J 10M 45.30% 46.50% 10.30% 13.50%

7J 5M 33.90% 33.70% 2.50% 10.60%

7J 10M 40.50% 41.10% 7.40% 11.30%

Values for 5 sublots

Cmax / SBS+EA Cmax / SBSi+EA TEC / SBS+EA TEC / SBSi+EA

3J 5M 41.20% 42.00% 10.30% 14.50%

3J 10M 53.50% 55.00% 16.40% 18.20%

5J 5M 32.30% 32.70% 4.20% 9.80%

5J 10M 48.40% 49.50% 10.70% 13.70%

7J 5M 34.40% 34.50% 5.30% 11.00%

7J 10M 42.50% 42.90% 8.90% 12.50%
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Table 2. Model comparison in terms of constraints, variables (continuous and discrete), average running time (sec) and GAP (%) (to 
lower bound).  
Ref: each problem is identified by the number of jobs (J) and machines (M), e.g. 3J 5M, represents the problem of 3 jobs and 5 
machines. And “Constr.” Stands for constraints, “Cont. Var” and “Discr.Var” for continuous and discrete variables, respectively and 
“Avg. Time” for average time

FSS+EA SBS+EA SBSi+EA

1 2 3 4 5 2 3 4 5

3J 5M

Constr. 69 106 133 160 187 121 163 205 247

Cont. Var. 17 32 47 62 77 32 47 62 77

Discr. Var. 51 51 51 51 51 96 141 186 231

Avg. Time 1 1 2 2 2 2 7 43 795

GAP 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

3J 10M

Constr. 129 206 263 320 377 236 323 410 497

Cont. Var. 32 62 92 122 152 62 92 122 152

Discr. Var. 96 96 96 96 96 186 276 366 456

Avg. Time 1 3 4 8 8 6 36 898 2944

GAP 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 2.6%

5J 5M

Constr. 175 240 285 330 375 265 335 405 475

Cont. Var. 27 52 77 102 127 52 77 102 127

Discr. Var. 95 95 95 95 95 170 245 320 395

Avg. Time 8 22 35 53 38 52 1185 2413 2939

GAP 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 2.9% 6.0%

5J 10M

Constr. 325 460 555 650 745 510 655 800 945

Cont. Var. 52 102 152 202 252 102 152 202 252

Discr. Var. 170 170 170 170 170 320 470 620 770

Avg. Time 28 591 1489 1246 1332 1553 2198 3600 3600

GAP 0.0% 0.0% 0.2% 0.3% 0.3% 0.3% 2.7% 6.0% 9.0%

7J 5M

Constr. 325 460 555 650 745 510 655 800 945

Cont. Var. 52 102 152 202 252 102 152 202 252

Discr. Var. 170 170 170 170 170 320 470 620 770

Avg. Time 28 591 1489 1246 1332 1553 2198 3600 3600

GAP 0.0% 0.0% 0.2% 0.3% 0.3% 0.3% 2.7% 6.0% 9.0%

7J 10M

Constr. 609 802 935 1068 1201 872 1075 1278 1481

Cont. Var. 72 142 212 282 352 142 212 282 352

Discr. Var. 252 252 252 252 252 462 672 882 1092

Avg. Time 2574 3222 3600 3600 3600 3600 3600 3600 3600

GAP 3.2% 3.7% 5.7% 5.7% 6.7% 4.3% 9.9% 13.8% 16.7%
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lot streaming, as the number of sublots increases, the 
computational cost also increases. Another indicator 
of the proportionality between the cost and the size 
of the problem, in terms of machines and jobs, is the 
number of variables (particularly the discrete ones). 
For example, for the case of 5J 10M, the FSS+EA 
has 170 discrete variables, while the SBS+EA and 5 
sublots have the same 170, but the SBSi+EA (with 5 
sublots) has 770 discrete variables. In other words, 
indexing the processing speed in the sublot (SB-
Si+EA) considerably increases the number of dis-
crete variables, and that is why for the same problem, 
the FSS+EA takes 28 seconds to reach the optimum, 
the SBS+EA takes 1332, while SBSi+EA times out of 
3600 seconds and fails to converge to the optimum 
(9% GAP).

5. Conclusions

In this work, a scheduling problem in flow shop
systems with energy considerations was approached. 
This problem, of increasing relevance in recent years, 
was addressed with lot-streaming strategies, which al-
lows dividing the work lot in such a way that activi-
ties can overlap. This strategy makes it possible to 
exploit the efficiency of production systems by mak-
ing the duration of operations more flexible. In this 
work, both makespan and energy consumption were 
reduced simultaneously. The reductions achieved 
are more than significant considering that it is only 
a sequencing strategy, which does not imply an in-
vestment in capital to improve installed capacity. In 
addition, the lot streaming model that allows to vary 
the processing speed for each sublot was found to 
deepen the benefits in terms of energy consumption, 

yielding the best results.
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