30,106 research outputs found
Computation of microdosimetric distributions for small sites
Object of this study is the computation of microdosimetric functions for sites which are too small to permit experimental determination of the distributions by Rossi-counters. The calculations are performed on simulated tracks generated by Monte-Carlo techniques.
The first part of the article deals with the computational procedure. The second part presents numerical results for protons of energies 0.5, 5, 20 MeV and for site diameters of 5, 10, 100 nm
Signatures of Klein tunneling in disordered graphene p-n-p junctions
We present a method for obtaining quantum transport properties in graphene
that uniquely combines three crucial features: microscopic treatment of charge
disorder, fully quantum mechanical analysis of transport, and the ability to
model experimentally relevant system sizes. As a pertinent application we study
the disorder dependence of Klein tunneling dominated transport in p-n-p
junctions. Both the resistance and the Fano factor show broad resonance peaks
due to the presence of quasi bound states. This feature is washed out by the
disorder when the mean free path becomes of the order of the distance between
the two p-n interfaces.Comment: 4 pages, 4 figure
Social robots in educational contexts: developing an application in enactive didactics
Due to advancements in sensor and actuator technology robots are becoming more and more common in everyday life. Many of the areas in which they are introduced demand close physical and social contact. In the last ten years the use of robots has also increasingly spread to the field of didactics, starting with their use as tools in STEM education. With the advancement of social robotics, the use of robots in didactics has been extended also to tutoring situations in which these \u201csocially aware\u201d robots interact with mainly children in, for example, language learning classes. In this paper we will give a brief overview of how robots have been used in this kind of settings until now. As a result it will become transparent that the majority of applications are not grounded in didactic theory. Recognizing this shortcoming, we propose a theory driven approach to the use of educational robots, centred on the idea that the combination of enactive didactics and social robotics holds great promises for a variety of tutoring activities in educational contexts. After defining our \u201cEnactive Robot Assisted Didactics\u201d approach, we will give an outlook on how the use of humanoid robots can advance it. On this basis, at the end of the paper, we will describe a concrete, currently on-going implementation of this approach, which we are realizing with the use of Softbank Robotics\u2019 Pepper robot during university lectures
Spectrum of k-string tensions in SU(N) gauge theories
We compute, for the four-dimensional SU(4) and SU(6) gauge theories
formulated on a lattice, the string tensions sigma_k related to sources with
Z_N charge k, using Monte Carlo simulations. Our results are compatible with
sigma_k \propto sin (k pi/N), and show sizeable deviations from Casimir
scaling.Comment: Lattice2001(confinement
Shape-independent scaling of excitonic confinement in realistic quantum wires
The scaling of exciton binding energy in semiconductor quantum wires is
investigated theoretically through a non-variational, fully three-dimensional
approach for a wide set of realistic state-of-the-art structures. We find that
in the strong confinement limit the same potential-to-kinetic energy ratio
holds for quite different wire cross-sections and compositions. As a
consequence, a universal (shape- and composition-independent) parameter can be
identified that governs the scaling of the binding energy with size. Previous
indications that the shape of the wire cross-section may have important effects
on exciton binding are discussed in the light of the present results.Comment: To appear in Phys. Rev. Lett. (12 pages + 2 figures in postscript
- …