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Summary. Object of  this study is the computation of microdosimetric functions 
for sites which are too small to permit experimental determination of the distri- 
butions by Rossi-counters. The calculations are performed on simulated tracks 
generated by Monte-Carlo techniques. 

The first part of the article deals with the computational procedure. The 
second part presents numerical results for protons of energies 0.5, 5, 20 MeV 
and for site diameters of 5, 10, 100 nm. 

Introduction 

Topic of this article is the calculation of microdosimetric distributions. The calcula- 
tions are performed for heavy charged particles and for spherical regions whose 
diameter is between 1 and 100 nm. The input data on which the calculations are 
based are simulated tracks of heavy charged particles. The simulated tracks have 
been generated by Paretzke [12, 13] on the basis of known and interpolated cross- 
sections of  charged particles in low atomic weight media 1. 

The general properties of microdosimetric quantities and their distributions have 
been considered earlier [7, 8]. The theoretical background need therefore not be 
repeated. The microdosimetric variable which will be used in the following is the 
lineal energy, y. This facilitates comparison with the familiar concept of LET. The 
connection to the other microdosimetric variables energy imparted, E, and specific 
energy, z, is straightforward. Numerical results will only be given for the single event 
distributions. This is sufficient since the dose dependent distributions can be derived 
from the single event distributions. 

* This investigation was supported by Public Service Research Grants No. CA 12536 and CA 
15307 from the National Cancer Institute and by Research Contract 208-76-7 BIO D of Eur- 
atom 

1 A recent survey of the subject of collision cross-sections is found in the Proceedings of the 
Symposium on the Distributions of Secondary Electrons from Ionizing Collisions [Radiat. Res. 63 
(1975)]. Valuable information is given in earlier work [2, 3, 6, 10] 
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The first part of this article deals with the computational procedures. The second 
part contains numerical results. These are mainly restricted to single event distribu- 
tions for protons of energy between 500 keV and 20 MeV. 

Computational Procedure 

Principle of the Approach 

The computations are based on simulated particle tracks. Each simulated particle 
track is represented by the so-called inchoate distribution. As pointed out earlier [7] 
the inchoate distribution is given by the coordinates of the transfer points, i.e. of 
those points where the primary or secondary ionizing particles transfer energy to the 
medium. The simulated charged particle tracks are those obtained by Monte Carlo 
simulation [12, 13]. In principle such particle tracks might also be derived from 
experimental observations for example in cloud chambers [4]. The computational 
procedures are applicable regardless of the origin of the input data. 

In the experiment one exposes one spherical cavity, the Rossi counter, to a 
sufficiently large fluence of charged particles. This is natural, since the instrumenta- 
tion is costly while tracks can be generated abundantly. In the computations the 
situation is reversed, since it is wasteful to generate a great number of tracks. It is 
therefore important that the information in each simulated track be fully exhausted. 
An essential point is accordingly the development of efficient sampling routines. The 
topic will be treated in some detail, since it is of interest even beyond the particular 
application presented in this study. 

It will be found sufficient to use short segments of the tracks of heavy charged 
particles which contain one or a few thousand ionizations. As in the earlier discus- 
sion [9] the term short segment implies that the LET of the particle does not change 
significantly along this segment and that the segment is straight. The numerical 
procedure will, however, be applicable regardless of these conditions. 

Method of Sampling 

The following discussion will make use of an important simplification. Only the 
ionizations in the simulated particle tracks are accounted for, while the excitations 
are disregarded. This means that the particle track is reduced to those transfer points 
which stand for ionizations. Furthermore the energy transfer belonging to each of 
the remaining transfer points is set equal to W, the mean energy expended per 
ionization. This is a drastic simplification which may not always be acceptable. 
However it is advantageous insofar as numerical results obtained in this way are 
comparable to experimental data based on ion collection in gas. A second advantage 
is a substantial reduction of the input data and a simplification of the numerical 
calculations. The discussion of the sampling procedures will make use of the same 
simplification. The formalism can however be readily adapted to the more rigorous 
analysis where charged particle tracks are evaluated in their precise form with all 
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transfer points and with all the proper energy transfers assigned to these transfer 
points. 

If one considers a spherical site of radius r, the associated volume of the charged 
particle track is that volume which results if each transfer point, i.e. each ionization, 
is made the center of a sphere of radius r. The individual spheres will, for the purpose 
of the present discussion, be called associated spheres; this will help to avoid confu- 
sion of these spheres with the sphere which is the reference site for the determination 
of the microdosimetric variable y. If one selects a point inside the associated volume 
and considers a sphere of radius r centered at this point, then this sphere will always 
contain at least one transfer point. If one considers a point outside the associated 
volume and a sphere of radius r centered at this point, then this sphere will never 
contain a transfer point. It is therefore sufficient to consider only those spheres 
whose centers are inside the associated volume, i.e. it is sufficient to sample points 
inside the associated volume. 

The associated volume is made up of the associated spheres, and these may 
partially overlap. The microdosimetric variables y, E, or z are largest at those points 
where the degree of overlap is largest. If, at a certain sampling point, n associated 
spheres overlap then the value of y is: 

3mW 
y = - -  (1) 

4r 

The equation is based on the simplification which has been mentioned above, i.e. 
it results if each transfer point is assumed to be an ionization which corresponds to 
an energy transfer W. 

According to these considerations it is sufficient to calculate the fractions of the 
associated volume which correspond to different degrees of overlap of the associated 
spheres. This would seem to be an elementary geometrical problem once the coordi- 
nates of the transfer points are known. Upon further reflection one finds however 
that a rigorous solution of the problem is far too complicated to be feasible. 

One is therefore forced to use sampling procedures. The straightforward method 
is the random choice of a sufficient number of sampling points inside the associated 
volume. This method will not actually be used since a procedure exists which is far 
more efficient for straight particle tracks. It is nevertheless of interest to note that the 
selection of points in the associated volume need not be uniform, and that, in fact, a 
uniform selection would be difficult due to the generally complicated shape of the 
associated volume. However one can use the method that has been designated as 
sampling over individual tranfers [8]. This is a two-step method. First one selects 
randomly a transfer point, then one selects randomly a point within the associated 
sphere, i.e. within the sphere centered at this transfer point. The resulting point is 
used as sampling point at which the microdosimetric variable y is determined, and 
the procedure is repeated until a sufficient number of points has been sampled. The 
method is practicable; it may indeed be the method of choice in the case of electron 
tracks which, due to their curvature, are more complicated than the tracks of heavy 
charged particles. For heavy charged particles however one reduces the computa- 
tional work greatly if one samples the microdosimetric variables not on individual 
points but on straight lines which are parallel to the particle track. The procedure 
will be described in the following. 
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Sampling Procedure Applicable to Straight Particle Tracks 

As pointed out in the preceding section it would be difficult to calculate analytically 
the fractions of the associated volume which correspond to different multiplicities of 
overlap, i.e. to the different values of the microdosimetric variable y. On the other 
hand, it is rather inefficient to use the simple alternative of determining the multipli- 
city of overlap, i.e. the value of y, at individual sampling points. There is however the 
possibility of an intermediate approach. Such an intermediate approach is to calcu- 
late the distribution of the microdosimetric variable in randomly selected linear sub- 
spaces, such as planes or straight lines, If planes were to be used, one would have to 
calculate the areas of overlap in a cluster of circles which result when the associated 
spheres are intersected by the plane. The problem is still too complicated for numeri- 
cal evaluation. For straight lines, on the other hand, the situation is acceptable; here 
one deals with the problem of determining distances of overlap of a cluster of inter- 
vals which result from the intersection of the straight line with the associated 
spheres. Accordingly the calculations are done by selecting randomly straight fines 
and by calculating the distribution of y on these sampling lines. 

The sampling of the microdosimetric variable y on straight lines instead of indivi- 
dual points has the advantage of generating considerably more information per 
sampling operation. The method represents an efficient combination of the analytical 
and the Monte Carlo approach; it is particularly useful if one deals with simulated 
segments of heavy charged particle tracks. The reason is that these track segments 
are straight or approximately straight, and that one can therefore use sampling lines 
parallel to the track core; in this way one obtains a considerable intersection of each 
such line with the associated volume. 

In each calculation one chooses successively a large number, N, of sampling 
lines. Typically the number will be 1000 or 2000. For each line one obtains a 
distribution, f~(y), (v = 1, 2 . . .  N), of the values of lineal energy y. This is the 
distribution of values y for all the spheres of radius r which have their center on the 
v-th sampling line. The overall distribution of y for the track segment is then ob- 
tained by superposition of the N distributions f,(y). The following sections will deal 
with the selection of sampling lines, with the proper weight factors in the superposi- 
tion of the individual distributions, and with the calculation of these individual distri- 
butions f~@). 

Selection of Sampling Lines 

Each sampling line has a certain length of intersection with the associated volume. 
Let I, be this length of intersection for the v-th sampling fine. This is the proper 
statistical weight of the function f,(y) in its contribution to the overall distribution 

f(y). 
If the selection probability of the v-th sampling line is not proportional to its 

statistical weight, l v, then appropriate compensation factors, G, must be used in the 
superposition which leads to f(y):  

N 

f(Y) = ~ Gf,(Y). (2) 
vml 
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It has been pointed out earlier (see p. 209 of Ref. 8) that the compensation factor, 
c~, must be equal to the ratio of the statistical weight, i.e. l~, and the selection 
probability p,. In order to derive the proper factors e, one must therefore determine 
the probabilities, p~, which belong to the selection procedure which is used. 

An efficient method to select sampling lines is closely connected to the sampl ing  
over individual  transfers .  In the procedure one first selects randomly a transfer 
point. Then one selects randomly a point in the associated sphere. A line through 
this point which is parallel to the track segment is then taken as the sampling 
line. 

One can readily see that the selection probability, p~, of a sampling line is, in this 
case, proportional not to l~ but to the total length, L~, which is obtained if one sums 
the intersections of the line with the individual associated spheres separately. The 
length L~ is always equal or larger than Iv; it is in fact equal to l~ multiplied by the 
mean multiplicity of overlap on the intersection. 

In order to obtain the proper statistical weights one must therefore average the 
functions f~(y) for the individual sampling lines according to the following formu- 
la: 

N N Iv 

f ( Y )  = ~ _l~ f , ( y ) / ~  - - .  (3) 
v=l L, v=l L~ 

It will be seen that this expression reduces to a simple form in the actual numerical 
evaluation. 

In practice the selection procedure for the sampling lines is slightly modified in 
order to reduce the Monte Carlo component of the approach. Typical track seg- 
ments which are used for the calculations consist of 1000 or 2000 transfer points 
which represent ionizations. In the sampling procedure these transfer points are not 
randomly selected but are selected consecutively, and one sampling line is estab- 
fished for each of the transfer points by choosing a point in the associated sphere 
belonging to the transfer point. This leads usually to sufficient accuracy. The formu- 
la for the selection of a sampling line which traverses the associated sphere of a 
transfer point is given in the appendix. 

The next section deals with the calculation of the distributions f~(y) on the indi- 
vidual sampling lines. 

Computa t ion  o f  the Dis t r ibu t ions  

Consider a Cartesian coordinate system with the z-axis on the core of the track 
segment. The sampling line is parallel to the z-axis and can therefore be character- 
ized by its coordinates x 0 and Yo. The coordinates of the transfer point T~ (i = 
1 . . . .  K) are designated by x;, y~, and z t. For each transfer point which is at a 
distance less than r from the sampling line one can compute the interval where the 
sampling line intersects the associated sphere of that transfer point. The z-coordi- 
nates, z s and zt, of the starting point and the terminating point of the interval are 
obtained by the formula: 

z s, z t  = z i  + Vr 2 - (xi  - Xo) 2 - (y~ - y o )  2_ (4) 
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Fig. 1. Two-dimensional diagram to illustrate the computation of the functions f~(y) from track seg- 
ments of  heavy particles. The upper part is a schematic diagram of  a track segment with its associated 
volume. The heavy line segments are those parts of the sampling line wherey is not zero. The two lower 
parts of the figure illustrate the two steps in the computation as they are discussed in the text 

For  a given sampling line one calculates all the coordinates zs and z t of the starting 
and the terminating points. The situation is represented schematically in Figure 1. I f  
n is the number of  intervals of  intersection one obtains 2n points. After these points 
are computed they are ordered into one common array so that their z-coordinates 
are in increasing order. One thus obtains a new array z~, (i = 1, 2 . . . .  2n). Its 
components z~ are the z-coordinates of  the 2n points. A second array, m~, (i = 1, 
2 , . . .  2n), has the values m i = 1 or m~ --- - 1  depending on whether the i-th point is 
the starting point or the terminating point of  an interval. 

The multiplicity of  overlap in the interval from z~ to z~ + 1 is equal to 
i 

M, = Y mr. (5) 
j = l  

This quantity corresponds to the function represented on the bot tom of  Figure I. 
It is now easy to obtain that length, s~(M), on the sampling line which corre- 

sponds to the multiplicity M of  overlap. One merely has to sum the lengths of  those 
segments for which M i = M. The normalized distribution of  multiplicities on the line 
is obtained as 

Mmzx 

f ~ ( M )  = s ~ ( M ) / ~  s~(M') = s~(M)/lo.  (6) 
M ' =  I 



Computation of Microdosimetric Distributions 129 

The multiplicity M is proportional to the lineal energy y, and is used here since it is 
the quantity actually appearing in the computation. However the change to y [see 
Eq. (1)] is trivial, and one can therefore write the corresponding equation in terms 
of y: 

f , ( v )  = sv(y)/ l  ~ . (7) 

Inserting this into Equation (3) one obtains a simple relation which is the basis of the 
numerical computations: 

N 

f ( Y )  "~ ~ .  s , ( y ) / L v .  (8) 
v=l  

The term s.(y) is that length on the v-th sampling line which belongs to the value y of 
the lineal energy. 

In order to avoid errors due to wrong values of y near the end of the track 
segments one disregards in the analysis those parts of the sampling lines which are 
within the length r of the endpoints of the segment. The resulting change in some of 
the formulae is elementary. 

Numerical Results 

As stated earlier, the computations use as input data track segments which are the 
result of Monte-Carlo simulation 2 [12, 13]. The present status of the method of 
generating simulated charged particle tracks is, at least partly, documented in the 
literature [ 12-14,  20]. The validity of the data and the remaining uncertainty due to 
incomplete knowledge of the differential cross sections for electronic collisions are 
not the topic of this article; the procedures described in the preceding sections will 
remain valid regardless of future changes in the input data. 

Even in the presence of systematic uncertainties a survey of numerical data will 
be useful to the radiobiologist. The results will illustrate correctly the characteristic 
dependence of the microdosimetric distributions on site diameters and stopping 
powers. 

The simulated tracks which have been utilized are short segments containing a 
minimum of 1000 ionizations. This corresponds to a length of about 0.7 o,m for 
500 keV protons and about 12 vm for 20 MeV protons. Only sites with radius up to 
100 nm are considered and the change of LET of a particle traversing such sites is 
insignificant. The LET is therefore taken to be constant on all track segments. Due 
to statistical fluctuations the track segments do not correspond exactly to the un- 
derlying LET values. All track segments have, however, been adjusted to the LET 
values for water [5]. 

Adjustment of the LET for a given track segment is a relatively simple opera- 
tion. One merely rearranges the individual deltas along the z-axis; the term del ta  is 
used to designate, in the present context, individual ionizations, groups of ioniza- 

2 A more complete compilation of numerical results is to be found in [1]. Some results for considera- 
bly larger sites have been obtained in an earlier study of Wilson [21] which is also based on simulated 
particle tracks 
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Fig. 2. Sum distribution, D(y), of absorbed dose in lineal energy for protons of 0.5 MeV in spheres of 
diameter 5, 10 and 100 nm. The broken line represents the function which corresponds to the approxi- 
mation in terms of the LET-concept 

tions, or delta rays resulting from one electronic collision of the primary particle. 
The procedure is of practical importance not only because it permits minor adjust- 
ments of LET. It also makes it possible to transform a simulated proton track into 
the track of a heavier ion of the same velocity. Results for heavier ions are however 
not the topic of the present article. 

The results are subject to two types of statistical uncertainty. The first is due to 
the fact that each track contains only a limited number of deltas. This error is most 
significant for the 20 MeV protons where delta rays up to about 40 keV can be 
generated, but occur with only small frequency. It has however been found that 
occurrence or non-occurrence of such high energy delta rays is of only moderate 
influence on the results. The reason is that the distributions o fy  produced by the fast 
protons and by relatively fast electrons are similar for the small regions which are 
here considered. 

The second error is due to the use of only a limited number of sampling lines. 
This error is small and can be quantitatively assessed by comparing the mean value 
-VD of the explicit distributionf(y) with the value YD which is calculated directly from 
the simulated track according to a formula derived in an earlier article [9]. The 
difference was in all cases less than 1%. This error is much smaller than the sys- 
tematic uncertainty in the simulated tracks. A high precision is nevertheless desirable 
in order to make results for different site diameters comparable. 

Figures 2 - 4  represent the dose distribution, D(y), of the lineal energy for proton 
energies of 0.5, 5, and 20 MeV. In each figure the distributions are given for sites of 
diameter 5, 10 and 100 nm. The dose distribution Dry) is here defined as (see also 
[8]). 

D(y) = f d(y') dy' =--1 f-y, y(y,) dy'. (9) 
yF y 

Y 

D(y) is equal to the fraction of energy which is delivered in events of lineal energy 
exceeding y. One track segment for each of the proton energies is used in the compu- 
tations. 
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Fig. 3. Sum distribution, Dry), of absorbed dose in lineal energy for protons of 5 MeV in spheres of 
diameter 5, 10 and 100 nm. The broken fine represents the function which corresponds to the approxi- 
mation in terms of the LET-concept 

1 \ \  PROTONS 
D(y) \ \  20 

o ,  
20 60 100 
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Fig. 4. Sum distribution, DO;), of absorbed dose in lineal energy for protons of 20 MeV in spheres of 
diameter 5, 10, and 100 rim. The broken line represents the function which corresponds to the approxi- 
mation in terms of the LET-concept 

The distributions should be drawn as step functions, since according to Equat ion 
(1) the quant i ty  linear energy is linked to the number,  n, of  ionizations and is there- 
fore a discrete variable. In the interest of  clearer representat ion the functions have 
however been approximated  by  continuous lines. Similar functions would result if, in 
the computat ions ,  actual  energy transfers and not  the average value W were as- 
signed to the transfer  points. 

The broken lines in Figures  2--4 indicate the distributions which would result 
f rom the simple LET concept,  i.e. f rom the assumption,  that  the particle t racks are 
straight lines with continuous energy transfer  and with no radial  extension. One can 
readily see that  the LET concept  is only a crude approximat ion even for the protons 
of  lowest energy and for the largest  sites which are here considered. Fo r  the protons 
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Fig. 5. Sum distribution, D(y), of absorbed dose in lineal energy in a sphere of 10 nm diameter for 
protons of 0.5, 5, and 20 MeV. The broken line corresponds to electrons of minimum stopping 
power 
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Fig. 6. Sum distribution, D(y), of absorbed dose in lineal energy in a sphere of 100 nm diameter for 
protons of 0.5, 5, and 20 MeV. The broken line corresponds to electrons of minimum stopping 
power 

of 20 MeV, and 5 MeV one realizes that energy concentrations in small sites are 
much larger than expected on the basis even of the unrestricted stopping power. 
These energy concentrations are mainly due to the occurrence of individual delta 

rays in the site. 
The dependence of the distributions on the stopping power of the proton is 

brought out more clearly in Figures 5 and 6. The distributions shown in Figures 2 - 4  
have here been rearranged into two groups belonging to the site diameters 10 nm 
and 100 nm. It is of particular interest to observe that a threefold change of LET 
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Fig. 7. Frequency mean, ~ ,  as a function of site diameters for protons of energy 0.5, 1, 5, and 20 MeV. 
The values for site diameters exceeding 100 nm are extrapolated 

Table 1. Values of 23D in keV/~m and of g in rad (lower numbers, in 
brackets) for protons of different energies and for spherical sites of 
different diameters. The stopping power is for water [5]; its values are 
indicated in Figures 2--4 

Site diameter Proton energy (MeV) 
(nm) 

0.5 5 20 

5 50 26.7 23.8 
(40.7 x 107) (2.17 × 107) (1.94 x 107) 

10 50 20.3 17.4 
(1.02 x 107) (4.13 x 106) (3.54 x l0 s) 

100 52 10.3 7 
(1.06 x 10 ~) (2.10 x 104) (1.43 x 104) 

from the 5 MeV proton to the 20 MeV proton leads to only a moderate shift in the 
microdosimetric distributions. 

The broken lines in Figures 5 and 6 are approximations of the distributions for 
fast electrons. Since no tracks of fast electrons were available, these have been 
simulated by transforming the track of the 20 MeV proton to a stopping power of 
0.2 keV/~m. Inspite of the change of stopping power by a factor of 14 the resulting 
distribution is, in the case of the smaller site, almost identical to that for the fast 
protons. 

In Figures 5 and 6 the quantity specific energy, z, is plotted on the upper ordi- 
nate. This is useful as it illustrates the extremely large values of the specific energy 
produced in small sites by particles even of low stopping power. 
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Finally the mean values, YF, corresponding to the distributions are given in 
Figure 7. 

On the basis of the ideas of Rossi and coworkers [15-17, 19] microdosimetry 
has in recent years developed into a separate field of growing importance. Now, as 
the study of small sites finds increasing attention [18], the connections to earlier 
work by Lea [ 11 ] become more apparent. A certain comparison is given in Figure 7. 
The dotted lines in this figure are obtained from values of the associated volumes 
given by Lea. These data are close to the present results. 

The important mean values YD are given only in tabular form for the distribu- 
tions D(y) in Figures 2--6. A detailed discussion of the quantity ~ and the socalled 
distance distribution for protons and heavier ions will be found in a subsequent 
article. 
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Appendix 

Random Selection of Coordinates 

Selection o f  a Variable Which Follows a Specified Distribution 

Algorithms for the generation of pseudo-random numbers generally produce a ran- 
dom variable, u, which is uniformly distributed in the interval [0, 1]. The problem 
then arises how to obtain a suitable function x(u) which follows a specified non- 
uniform distribution. An answer can best be found if one considers the general 
case. 

If G(u) is the sum distribution of u and F(x) is the sum distribution of x, and if x 
is a monotoneously increasing function of u, the following relation holds: 

G(u) = P(u_ <. u) -= P(x(u) <. x(u)) = P(x_ ~ x) = F(x) .  (A.1) 

Therefore: 

x = F-I(G(u)) .  (A.2) 

If  u is distributed uniformly in [0, 1] one has: 

G(u) = u and x = F-l(u).  (A.3) 

This is the general rule which is used to obtain a random variable, x, which follows a 
specified sum distribution F(x). 

Application to the Selection o f  Sampling Lines 

The definition of a sampling line requires the selection of a point P in the associated 
sphere of a transfer point. The sampling line is then the line parallel to the z-axis 
through P. 
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The selection of a point in a sphere of radius r, whose center is taken as the 
origin amounts to the random selection of three independent polar coordinates ~, 0, 
¢ with the following densities: 

pl(O) = 1/2er ; P2(O) = ( s i n e ) / 2 ;  P3(Q) = 3~ 2/r3" (A.4) 

In'the present appfication it is hoWever sufficient to select only the two coordinates 
of the projection of P into a plane orthogonal to the z-axis. If the coordinates, (s, 0) 
are again in a polar system one has the following densities 

pl(O) = 1/27r 

p2(s) = 3s ~ / ~ -  s21r 3 (A.5) 

and the corresponding sum distributions: 

Pl(0) = 0/27r 

P2(s) = 1 -- (1-- 82//'2) 3/2 (A.6) 

accordingly 0 and s are obtained in the following way from a random variable, u, 
which is uniformly distributed: 

0 = 2zru 

s =  r l / 1 - -  u 2/3. (A.7) 
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