476 research outputs found
New data acquisition system records bearing measurements directly
Digital data acquisition system records steady state and dynamic data of bearing and shaft displacement. Elliptical orbits formed can be reconstructed and the data reduced automatically. System also reads pressures, temperatures, flows, and torque during any one data scan
Potassium topping cycles for stationary power
A design study was made of the potassium topping cycle powerplant for central station use. Initially, powerplant performance and economics were studied parametrically by using an existing steam plant as the bottom part of the cycle. Two distinct powerplants were identified which had good thermodynamic and economic performance. Conceptual designs were made of these two powerplants in the 1200 MWe size, and capital and operating costs were estimated for these powerplants. A technical evaluation of these plants was made including conservation of fuel resources, environmental impact, technology status, and degree of development risk. It is concluded that the potassium topping cycle could have a significant impact on national goals such as air and water pollution control and conservation of natural resources because of its higher energy conversion efficiency
Hydrodynamic journal bearing test and analysis
Hydrodynamic journal bearing test and analysi
Two-stage potassium test turbine. Volume 1 - Fluid dynamic design and performance
Two stage turbine suitable for use in wet potassium vapor at temperatures of 1400 to 1600 deg
Polarization fine-structure and enhanced single-photon emission of self-assembled lateral InGaAs quantum dot molecules embedded in a planar micro-cavity
Single lateral InGaAs quantum dot molecules have been embedded in a planar
micro-cavity in order to increase the luminescence extraction efficiency. Using
a combination of metal-organic vapor phase and molecular beam epitaxy samples
could be produced that exhibit a 30 times enhanced single-photon emission rate.
We also show that the single-photon emission is fully switchable between two
different molecular excitonic recombination energies by applying a lateral
electric field. Furthermore, the presence of a polarization fine-structure
splitting of the molecular neutral excitonic states is reported which leads to
two polarization-split classically correlated biexciton exciton cascades. The
fine-structure splitting is found to be on the order of 10 micro-eV.Comment: 14 pages, 4 figures; the following article has been submitted to
Journal of Applied Physics (29th ICPS - invited paper); after it is
published, it will be found at http://jap.aip.org
Hydrodynamic journal bearing program Quarterly progress report, Jan. 29 - Apr. 29, 1966
Fabrication and testing of hydrodynamic journal bearing for spacecraft power syste
Hydrodynamic journal bearing program Quarterly progress report, 29 Apr. - 29 Jul. 1966
Hydrodynamic journal bearing instrumentation progra
Detecting chaos in particle accelerators through the frequency map analysis method
The motion of beams in particle accelerators is dominated by a plethora of
non-linear effects which can enhance chaotic motion and limit their
performance. The application of advanced non-linear dynamics methods for
detecting and correcting these effects and thereby increasing the region of
beam stability plays an essential role during the accelerator design phase but
also their operation. After describing the nature of non-linear effects and
their impact on performance parameters of different particle accelerator
categories, the theory of non-linear particle motion is outlined. The recent
developments on the methods employed for the analysis of chaotic beam motion
are detailed. In particular, the ability of the frequency map analysis method
to detect chaotic motion and guide the correction of non-linear effects is
demonstrated in particle tracking simulations but also experimental data.Comment: Submitted for publication in Chaos, Focus Issue: Chaos Detection
Methods and Predictabilit
- …