5 research outputs found
Investigar en Trabajo Social: diferentes experiencias como pasantes de investigación
El presente trabajo se propone compartir tres experiencias de investigación llevadas a cabo por estudiantes (ahora licenciadas) en la Facultad de Trabajo Social de la Universidad Nacional de La Plata, en diferentes proyectos de investigación. Dos de las experiencias de pasantías se enmarcaron en el proyecto de investigación “Seguridad, Violencia y Derechos Humanos. Un estudio de las representaciones sociales en jóvenes y policías”1. La otra pasantía se inserta en el proyecto “Disputas en el espacio público: cultura, política y desigualdades socio-urbanas”2. A su vez, dos de nosotras continuamos nuestro proceso de aprendizaje del oficio de investigar a través de dos becas CIN en el marco de los proyectos de investigación acreditados, mencionados anteriormente. Haremos una breve mención respecto a esto.
Por último, analizaremos las experiencias como pasantes de investigación a la luz de los aportes de distintos autores/as, haciendo hincapié principalmente en la comprensión de las competencias, habilidades y destrezas necesarias para desarrollar la práctica investigativa.Eje Teórico-metodológico en Trabajo Social-GT 27: Metodología y Trabajo Social.Facultad de Trabajo Socia
Elasticity in Bubble Rupture
When a Newtonian
bubble ruptures, the film retraction dynamics
is controlled by the interplay of surface, inertial, and viscous forces.
In case a viscoelastic liquid is considered, the scenario is enriched
by the appearance of a new significant contribution, namely, the elastic
force. In this paper, we investigate experimentally the retraction
of viscoelastic bubbles inflated at different blowing rates, showing
that the amount of elastic energy stored by the liquid film enclosing
the bubble depends on the inflation history and in turn affects the
velocity of film retraction when the bubble is punctured. Several
viscoelastic liquids are considered. We also perform direct numerical
simulations to support the experimental findings. Finally, we develop
a simple heuristic model able to interpret the physical mechanism
underlying the process
Elasticity in Bubble Rupture
When a Newtonian
bubble ruptures, the film retraction dynamics
is controlled by the interplay of surface, inertial, and viscous forces.
In case a viscoelastic liquid is considered, the scenario is enriched
by the appearance of a new significant contribution, namely, the elastic
force. In this paper, we investigate experimentally the retraction
of viscoelastic bubbles inflated at different blowing rates, showing
that the amount of elastic energy stored by the liquid film enclosing
the bubble depends on the inflation history and in turn affects the
velocity of film retraction when the bubble is punctured. Several
viscoelastic liquids are considered. We also perform direct numerical
simulations to support the experimental findings. Finally, we develop
a simple heuristic model able to interpret the physical mechanism
underlying the process
Elasticity in Bubble Rupture
When a Newtonian
bubble ruptures, the film retraction dynamics
is controlled by the interplay of surface, inertial, and viscous forces.
In case a viscoelastic liquid is considered, the scenario is enriched
by the appearance of a new significant contribution, namely, the elastic
force. In this paper, we investigate experimentally the retraction
of viscoelastic bubbles inflated at different blowing rates, showing
that the amount of elastic energy stored by the liquid film enclosing
the bubble depends on the inflation history and in turn affects the
velocity of film retraction when the bubble is punctured. Several
viscoelastic liquids are considered. We also perform direct numerical
simulations to support the experimental findings. Finally, we develop
a simple heuristic model able to interpret the physical mechanism
underlying the process
Viscosity of Ring Polymer Melts
We
have measured the linear rheology of critically purified ring
polyisoprenes, polystyrenes, and polyethyleneoxides of different molar
masses. The ratio of the zero-shear viscosities of linear polymer
melts η<sub>0,linear</sub> to their ring counterparts η<sub>0,ring</sub> at isofrictional conditions is discussed
as a function of the number of entanglements <i>Z</i>. In
the unentangled regime η<sub>0,linear</sub>/η<sub>0,ring</sub> is virtually
constant, consistent with the earlier data, atomistic simulations,
and the theoretical expectation η<sub>0,linear</sub>/η<sub>0,ring</sub> = 2. In
the entanglement regime, the <i>Z</i>-dependence of ring
viscosity is much weaker than that of linear polymers, in qualitative
agreement with predictions from scaling theory and simulations. The
power-law extracted from the available experimental data in the rather
limited range 1 < <i>Z</i> < 20, η<sub>0,linear</sub>/η<sub>0,ring</sub> ∼ <i>Z</i><sup>1.2±0.3</sup>,
is weaker than the scaling prediction (η<sub>0,linear</sub>/η<sub>0,ring</sub> ∼<i> Z</i><sup>1.6±0.3</sup>)
and the simulations (η<sub>0,linear</sub>/η<sub>0,ring</sub> ∼ <i>Z</i><sup>2.0±0.3</sup>). Nevertheless,
the present collection
of state-of-the-art experimental data unambiguously demonstrates that
rings exhibit a universal trend clearly departing from that of their
linear counterparts, and hence it represents a major step toward resolving
a 30-year-old problem