556 research outputs found

    Probabilistic risk assessment of the environmental impacts of pesticides in the Crocodile (west) Marico catchment, North-West Province

    Get PDF
    External agricultural inputs, such as pesticides, may pose risks to aquatic ecosystems and affect aquatic populations, communities and ecosystems. To predict these risks, a tiered approach was followed, incorporating both the PRIMET and PERPEST models. The first-tier PRIMET model is designed to yield a relatively worst-case risk assessment requiring a minimum of input data, after which the effects of the risks can be refined using a higher tier PERPEST model. The risk assessment initially depends on data supplied from local landowners, pesticide characteristic, application scheme and physical scenario of the environment under question. Preliminary results are presented, together with ecotoxicological data on several frequently-used pesticides in a section of the Crocodile (west) Marico Water Management Area (WMA) in South Africa. This area is historically known to have a high pesticide usage, with deltamethrin, aldicarb, parathion, cypermethrin and dichlorvos being the main pesticides used. Deltamethrin was indicated as having the highest probability of risks to aquatic organisms occurring in the study area. Cypermethrin, parathion, dichlorvos, carbaryl, bromoxynil, linuron, methomyl and aldicarb were all indicated as having possible risks (ETR 1-100) to the aquatic environment. Pesticides posing no risk included fenamiphos, abamectin, pendimethalin, captan, endosulfan, alachlor, bentazone and cyromazine (ETR<1). The pesticides posing a possible risk to the aquatic ecosystem were evaluated further to determine their effects on 8 grouped endpoints using the PERPEST effect model. Deltamethrin and cypermethrin were again noted as posing the greatest risk and clear effects were eminent for aquatic insects and macro-crustaceans, followed by micro-crustaceans and rotifers. High percentages of clear effects on insects were also observed for carbaryl, parathion and dichlorvos. Linuron was indicated as having minimal clear effects on community metabolism, macrophytes and phytoplankton classes, while lesser clear effects of bromoxynil occurred on periphyton communities. Application of both the lower-tier PRIMET and higher-tier PERPEST models showed similar trends in that they both ranked the top 5 pesticides in the same order of risk. This approach offers a significant improvement over the presently-used simulation models or use of safety factors. It is therefore especially useful in developing countries such as South Africa, where pesticide environmental risk information is scarce. Although these models were effectively used in this study, it still has to be validated further under South African conditionsKeywords: risk-assessment model, pesticides, aquatic ecosyste

    Research trends in the use of remote sensing for inland water quality science: Moving towards multidisciplinary applications

    Get PDF
    Remote sensing approaches to measuring inland water quality date back nearly 50 years to the beginning of the satellite era. Over this time span, hundreds of peer-reviewed publications have demonstrated promising remote sensing models to estimate biological, chemical, and physical properties of inland waterbodies. Until recently, most of these publications focused largely on algorithm development as opposed to implementation of those algorithms to address specific science questions. This slow evolution contrasts with terrestrial and oceanic remote sensing, where methods development in the 1970s led to publications focused on understanding spatially expansive, complex processes as early as the mid-1980s. This review explores the progression of inland water quality remote sensing from methodological development to scientific applications. We use bibliometric analysis to assess overall patterns in the field and subsequently examine 236 key papers to identify trends in research focus and scale. The results highlight an initial 30 year period where the majority of publications focused on model development and validation followed by a spike in publications, beginning in the early-2000s, applying remote sensing models to analyze spatiotemporal trends, drivers, and impacts of changing water quality on ecosystems and human populations. Recent and emerging resources, including improved data availability and enhanced processing platforms, are enabling researchers to address challenging science questions and model spatiotemporally explicit patterns in water quality. Examination of the literature shows that the past 10-15 years has brought about a focal shift within the field, where researchers are using improved computing resources, datasets, and operational remote sensing algorithms to better understand complex inland water systems. Future satellite missions promise to continue these improvements by providing observational continuity with spatial/spectral resolutions ideal for inland waters

    The Color of Rivers

    Get PDF
    Rivers are among the most imperiled ecosystems globally, yet we do not have broad-scale understanding of their changing ecology because most are rarely sampled. Water color, as perceived by the human eye, is an integrative measure of water quality directly observed by satellites. We examined patterns in river color between 1984 and 2018 by building a remote sensing database of surface reflectance, RiverSR, extracted from 234,727 Landsat images covering 108,000 kilometers of rivers > 60 m wide in the contiguous USA. We found 1) broad regional patterns in river color, with 56% of observations dominantly yellow and 38% dominantly green; 2) river color has three distinct seasonal patterns that were synchronous with flow regimes; 3) one third of rivers had significant color shifts over the last 35 years. RiverSR provides the first map of river color and new insights into macrosystems ecology of rivers

    Shifting Patterns of Summer Lake Color Phenology in Over 26,000 US Lakes

    Get PDF
    Lakes are often defined by seasonal cycles. The seasonal timing, or phenology, of many lake processes are changing in response to human activities. However, long-term records exist for few lakes, and extrapolating patterns observed in these lakes to entire landscapes is exceedingly difficult using the limited number of available in situ observations. Limited landscape-level observations mean we do not know how common shifts in lake phenology are at macroscales. Here, we use a new remote sensing data set, LimnoSat-US, to analyze U.S. summer lake color phenology between 1984 and 2020 across more than 26,000 lakes. Our results show that summer lake color seasonality can be generalized into five distinct phenology groups that follow well-known patterns of phytoplankton succession. The frequency with which lakes transition from one phenology group to another is tied to lake and landscape level characteristics. Lakes with high inflows and low variation in their seasonal surface area are generally more stable, while lakes in areas with high interannual variations in climate and catchment population density show less stability. Our results reveal previously unexamined spatiotemporal patterns in lake seasonality and demonstrate the utility of LimnoSat-US, which, with over 22 million remote sensing observations of lakes, creates novel opportunities to examine changing lake ecosystems at a national scale

    Multi-decadal improvement in US Lake water clarity

    Get PDF
    Across the globe, recent work examining the state of freshwater resources paints an increasingly dire picture of degraded water quality. However, much of this work either focuses on a small subset of large waterbodies or uses in situ water quality datasets that contain biases in when and where sampling occurred. Using these unrepresentative samples limits our understanding of landscape level changes in aquatic systems. In lakes, overall water clarity provides a strong proxy for water quality because it responds to surrounding atmospheric and terrestrial processes. Here, we use satellite remote sensing of over 14 000 lakes to show that lake water clarity in the U.S. has increased by an average of 0.52 cm yr-1 since 1984. The largest increases occurred prior to 2000 in densely populated catchments and within smaller waterbodies. This is consistent with observed improvements in water quality in U.S. streams and lakes stemming from sweeping environmental reforms in the 1970s and 1980s that prioritized point-source pollution in largely urban areas. The comprehensive, long-term trends presented here emphasize the need for representative sampling of freshwater resources when examining macroscale trends and are consistent with the idea that extensive U.S. freshwater pollution abatement measures have been effective and enduring, at least for point-source pollution controls

    AquaSat: A Data Set to Enable Remote Sensing of Water Quality for Inland Waters

    Get PDF
    Satellite estimates of inland water quality have the potential to vastly expand our ability to observe and monitor the dynamics of large water bodies. For almost 50 years, we have been able to remotely sense key water quality constituents like total suspended sediment, dissolved organic carbon, chlorophyll a, and Secchi disk depth. Nonetheless, remote sensing of water quality is poorly integrated into inland water sciences, in part due to a lack of publicly available training data and a perception that remote estimates are unreliable. Remote sensing models of water quality can be improved by training and validation on larger data sets of coincident field and satellite observations, here called matchups. To facilitate model development and deeper integration of remote sensing into inland water science, we have built AquaSat, the largest such matchup data set ever assembled. AquaSat contains more than 600,000 matchups, covering 1984–2019, of ground-based total suspended sediment, dissolved organic carbon, chlorophyll a, and SDDSecchi disk depth measurements paired with spectral reflectance from Landsat 5, 7, and 8 collected within ±1 day of each other. To build AquaSat, we developed open source tools in R and Python and applied them to existing public data sets covering the contiguous United States, including the Water Quality Portal, LAGOS-NE, and the Landsat archive. In addition to publishing the data set, we are also publishing our full code architecture to facilitate expanding and improving AquaSat. We anticipate that this work will help make remote sensing of inland water accessible to more hydrologists, ecologists, and limnologists while facilitating novel data-driven approaches to monitoring and understanding critical water resources at large spatiotemporal scales

    Glucocorticoids regulate AKR1D1 activity in human liver in vitro and in vivo

    Get PDF
    Steroid 5β-reductase (AKR1D1) is highly expressed in human liver where it inactivates endogenous glucocorticoids and catalyses an important step in bile acid synthesis. Endogenous and synthetic glucocorticoids are potent regulators of metabolic phenotype and play a crucial role in hepatic glucose metabolism. However, the potential of synthetic glucocorticoids to be metabolised by AKR1D1 as well as to regulate its expression and activity has not been investigated. The impact of glucocorticoids on AKR1D1 activity was assessed in human liver HepG2 and Huh7 cells; AKR1D1 expression was assessed by qPCR and Western blotting. Genetic manipulation of AKR1D1 expression was conducted in HepG2 and Huh7 cells and metabolic assessments were made using qPCR. Urinary steroid metabolite profiling in healthy volunteers was performed pre- and post-dexamethasone treatment, using gas chromatography-mass spectrometry. AKR1D1 metabolised endogenous cortisol, but cleared prednisolone and dexamethasone less efficiently. In vitro and in vivo, dexamethasone decreased AKR1D1 expression and activity, further limiting glucocorticoid clearance and augmenting action. Dexamethasone enhanced gluconeogenic and glycogen synthesis gene expression in liver cell models and these changes were mirrored by genetic knockdown of AKR1D1 expression. The effects of AKR1D1 knockdown were mediated through multiple nuclear hormone receptors, including the glucocorticoid, pregnane X and farnesoid X receptors. Glucocorticoids down-regulate AKR1D1 expression and activity and thereby reduce glucocorticoid clearance. In addition, AKR1D1 down-regulation alters the activation of multiple nuclear hormone receptors to drive changes in gluconeogenic and glycogen synthesis gene expression profiles, which may exacerbate the adverse impact of exogenous glucocorticoids

    Heritability of attention problems in children II: longitudinal results from a study of twins age 3 to 12.

    Get PDF
    this paper we present data of large samples of twin families, with an equal number of girls and boys. The well-known gender difference with boys displaying more OA and AP was observed at each age. Even at the age of 3, boys display more OA problems than girls. Clinical studies have indicated that severe problem behavior can be identified in very young children (see for review, Campbell, 1995; Keenan & Wakschlag, 2000; Shaw, Owens, Giovannelli, & Winslow, 2001) and that the onset of ADHD is during the pre-school period (Barkley, Fisher, Edelbrock, & Smallish, 1990; Table 6 Top part includes percentages of total variances (diagonal) and covariances (off-diagonal) explained by additive genetic, genetic dominance, and unique environmental components based on best fitting models. Percentages for boys and girls are reported below and above diagonal, respectively. Lower part includes correlations calculated for additive genetic, genetic dominance, and unique environmental sources of variance between different ages. Correlations for boys and girls are reported below and above diagonal, respectively Relative proportions of variance and covariance BoysnGirls A% D% E% OA 3 AP 7 AP 10 AP 12 OA 3 AP 7 AP 10 AP 12 OA 3 AP 7 AP 10 AP 12 OA 3 50n41 73 79 75 22n33 17 13 14 28n26 10 8 11 AP 7 59 33n57 50 53 31 39n16 31 28 10 28n27 19 19 AP 10 86 31 41n48 47 6 51 31n25 32 8 18 28n27 21 AP 12 71 24 31 40n54 16 55 45 30n18 13 21 24 30n28 Correlations between different ages BoysnGirls ADE OA 3 AP 7 AP 10 AP 12 OA 3 AP 7 AP 10 AP 12 OA 3 AP 7 AP 10 AP 12 OA 3 1.00 .60 .66 .57 1.00 .30 .16 .20 1.00 .15 .12 .14 AP 7 .57 1.00 .62 .57 .41 1.00 .99 1.00 .15 1.00 .46 .41 AP 10 .68 .56 1.00 .61 .08 .94 1.00 1.00 .11 .42 1.00 .50 AP 12 .49 .42 .53 1.00 .20 .98 .99 1.00 .14 .45 .58 1.00 ..

    Black Hole Spin via Continuum Fitting and the Role of Spin in Powering Transient Jets

    Full text link
    The spins of ten stellar black holes have been measured using the continuum-fitting method. These black holes are located in two distinct classes of X-ray binary systems, one that is persistently X-ray bright and another that is transient. Both the persistent and transient black holes remain for long periods in a state where their spectra are dominated by a thermal accretion disk component. The spin of a black hole of known mass and distance can be measured by fitting this thermal continuum spectrum to the thin-disk model of Novikov and Thorne; the key fit parameter is the radius of the inner edge of the black hole's accretion disk. Strong observational and theoretical evidence links the inner-disk radius to the radius of the innermost stable circular orbit, which is trivially related to the dimensionless spin parameter a_* of the black hole (|a_*| < 1). The ten spins that have so far been measured by this continuum-fitting method range widely from a_* \approx 0 to a_* > 0.95. The robustness of the method is demonstrated by the dozens or hundreds of independent and consistent measurements of spin that have been obtained for several black holes, and through careful consideration of many sources of systematic error. Among the results discussed is a dichotomy between the transient and persistent black holes; the latter have higher spins and larger masses. Also discussed is recently discovered evidence in the transient sources for a correlation between the power of ballistic jets and black hole spin.Comment: 30 pages. Accepted for publication in Space Science Reviews. Also to appear in hard cover in the Space Sciences Series of ISSI "The Physics of Accretion onto Black Holes" (Springer Publisher). Changes to Sections 5.2, 6.1 and 7.4. Section 7.4 responds to Russell et al. 2013 (MNRAS, 431, 405) who find no evidence for a correlation between the power of ballistic jets and black hole spi
    • …
    corecore