34,376 research outputs found

    Design of a Multi-Moon Orbiter

    Get PDF
    The Multi-Moon Orbiter concept is introduced, wherein a single spacecraft orbits several moons of Jupiter, allowing long duration observations. The ΔV requirements for this mission can be low if ballistic captures and resonant gravity assists by Jupiter’s moons are used. For example, using only 22 m/s, a spacecraft initially injected in a jovian orbit can be directed into a capture orbit around Europa, orbiting both Callisto and Ganymede enroute. The time of flight for this preliminary trajectory is four years, but may be reduced by striking a compromise between fuel and time optimization during the inter-moon transfer phases

    Application of dynamical systems theory to a very low energy transfer

    Get PDF
    We use lobe dynamics in the restricted three-body problem to design orbits with prescribed itineraries with respect to the resonance regions within a Hill’s region. The application we envision is the design of a low energy trajectory to orbit three of Jupiter’s moons using the patched three-body approximation (P3BA). We introduce the “switching region,” the P3BA analogue to the “sphere of influence.” Numerical results are given for the problem of finding the fastest trajectory from an initial region of phase space (escape orbits from moon A) to a target region (orbits captured by moon B) using small controls

    The equivalence of information-theoretic and likelihood-based methods for neural dimensionality reduction

    Get PDF
    Stimulus dimensionality-reduction methods in neuroscience seek to identify a low-dimensional space of stimulus features that affect a neuron's probability of spiking. One popular method, known as maximally informative dimensions (MID), uses an information-theoretic quantity known as "single-spike information" to identify this space. Here we examine MID from a model-based perspective. We show that MID is a maximum-likelihood estimator for the parameters of a linear-nonlinear-Poisson (LNP) model, and that the empirical single-spike information corresponds to the normalized log-likelihood under a Poisson model. This equivalence implies that MID does not necessarily find maximally informative stimulus dimensions when spiking is not well described as Poisson. We provide several examples to illustrate this shortcoming, and derive a lower bound on the information lost when spiking is Bernoulli in discrete time bins. To overcome this limitation, we introduce model-based dimensionality reduction methods for neurons with non-Poisson firing statistics, and show that they can be framed equivalently in likelihood-based or information-theoretic terms. Finally, we show how to overcome practical limitations on the number of stimulus dimensions that MID can estimate by constraining the form of the non-parametric nonlinearity in an LNP model. We illustrate these methods with simulations and data from primate visual cortex

    The selection, appraisal and retention of digital scientific data: dighlights of an ERPANET/CODATA workshop

    Get PDF
    CODATA and ERPANET collaborated to convene an international archiving workshop on the selection, appraisal, and retention of digital scientific data, which was held on 15-17 December 2003 at the Biblioteca Nacional in Lisbon, Portugal. The workshop brought together more than 65 researchers, data and information managers, archivists, and librarians from 13 countries to discuss the issues involved in making critical decisions regarding the long-term preservation of the scientific record. One of the major aims for this workshop was to provide an international forum to exchange information about data archiving policies and practices across different scientific, institutional, and national contexts. Highlights from the workshop discussions are presented

    Invariant Manifolds, the Spatial Three-Body Problem and Space Mission Design

    Get PDF
    The invariant manifold structures of the collinear libration points for the spatial restricted three-body problem provide the framework for understanding complex dynamical phenomena from a geometric point of view. In particular, the stable and unstable invariant manifold \tubes" associated to libration point orbits are the phase space structures that provide a conduit for orbits between primary bodies for separate three-body systems. These invariant manifold tubes can be used to construct new spacecraft trajectories, such as a \Petit Grand Tour" of the moons of Jupiter. Previous work focused on the planar circular restricted three-body problem. The current work extends the results to the spatial case

    Constructing a Low Energy Transfer Between Jovian Moons

    Get PDF
    There has recently been considerable interest in sending a spacecraft to orbit Europa, the smallest of the four Galilean moons of Jupiter. The trajectory design involved in effecting a capture by Europa presents formidable challenges to traditional conic analysis since the regimes of motion involved depend heavily on three-body dynamics. New three-body perspectives are required to design successful and efficient missions which take full advantage of the natural dynamics. Not only does a three-body approach provide low-fuel trajectories, but it also increases the flexibility and versatility of missions. We apply this approach to design a new mission concept wherein a spacecraft "leap-frogs" between moons, orbiting each for a desired duration in a temporary capture orbit. We call this concept the "Petit Grand Tour." For this application, we apply dynamical systems techniques developed in a previous paper to design a Europa capture orbit. We show how it is possible, using a gravitional boost from Ganymede, to go from a jovicentric orbit beyond the orbit of Ganymede to a ballistic capture orbit around Europa. The main new technical result is the employment of dynamical channels in the phase space - tubes in the energy surface which naturally link the vicinity of Ganymede to the vicinity of Europa. The transfer V necessary to jump from one moon to another is less than half that required by a standard Hohmann transfer

    Assessing digital preservation frameworks: the approach of the SHAMAN project

    Get PDF
    How can we deliver infrastructure capable of supporting the preservation of digital objects, as well as the services that can be applied to those digital objects, in ways that future unknown systems will understand? A critical problem in developing systems is the process of validating whether the delivered solution effectively reflects the validated requirements. This is a challenge also for the EU-funded SHAMAN project, which aims to develop an integrated preservation framework using grid-technologies for distributed networks of digital preservation systems, for managing the storage, access, presentation, and manipulation of digital objects over time. Recognising this, the project team ensured that alongside the user requirements an assessment framework was developed. This paper presents the assessment of the SHAMAN demonstrators for the memory institution, industrial design and engineering and eScience domains, from the point of view of user’s needs and fitness for purpose. An innovative synergistic use of TRAC criteria, DRAMBORA risk registry and mitigation strategies, iRODS rules and information system models requirements has been designed, with the underlying goal to define associated policies, rules and state information, and make them wherever possible machine-encodable and enforceable. The described assessment framework can be valuable not only for the implementers of this project preservation framework, but for the wider digital preservation community, because it provides a holistic approach to assessing and validating the preservation of digital libraries, digital repositories and data centres

    A flexible low-cost, high-precision, single interface electrical impedance tomography system for breast cancer detection using FPGA

    Get PDF
    Typically, in multi-frequency Electrical Impedance Tomography (EIT) systems, a current is applied and the voltages developed across the subject are detected. However, due to the complexity of designing stable current sources, there has been mention in the literature of applying a voltage to the subject whilst measuring the consequent current flow. This paper presents a comparative study between the two techniques in a novel design suitable for the detection of breast cancers. The suggested instrument borrows the best features of both the injection of current and the application of voltage, circumventing their limitations. Furthermore, the system has a common patient-electrode interface for both methodologies, whilst the control of the system and the necessary signal processing is carried out in a field programmable gate array (FPGA). Through this novel system, wide-bandwidth, low-noise, as well as high-speed (frame rate) can be achieved

    Instantaneous Pair Theory for High-Frequency Vibrational Energy Relaxation in Fluids

    Full text link
    Notwithstanding the long and distinguished history of studies of vibrational energy relaxation, exactly how it is that high frequency vibrations manage to relax in a liquid remains somewhat of a mystery. Both experimental and theoretical approaches seem to say that there is a natural frequency range associated with intermolecular motions in liquids, typically spanning no more than a few hundred cm^{-1}. Landau-Teller-like theories explain how a solvent can absorb any vibrational energy within this "band", but how is it that molecules can rid themselves of superfluous vibrational energies significantly in excess of these values? We develop a theory for such processes based on the idea that the crucial liquid motions are those that most rapidly modulate the force on the vibrating coordinate -- and that by far the most important of these motions are those involving what we have called the mutual nearest neighbors of the vibrating solute. Specifically, we suggest that whenever there is a single solvent molecule sufficiently close to the solute that the solvent and solute are each other's nearest neighbors, then the instantaneous scattering dynamics of the solute-solvent pair alone suffices to explain the high frequency relaxation. The many-body features of the liquid only appear in the guise of a purely equilibrium problem, that of finding the likelihood of particularly effective solvent arrangements around the solute. These results are tested numerically on model diatomic solutes dissolved in atomic fluids (including the experimentally and theoretically interesting case of I_2 in Xe). The instantaneous pair theory leads to results in quantitative agreement with those obtained from far more laborious exact molecular dynamics simulations.Comment: 55 pages, 6 figures Scheduled to appear in J. Chem. Phys., Jan, 199
    corecore