38,736 research outputs found
Evaluation of ignition mechanisms in selected nonmetallic materials
Test program evaluates thermal and electric ignition mechanisms in selected nonmetallic materials found in spacecraft with concentrated oxygen atmospheres. The phenomena evaluated were spontaneous ignition, ignition of flammable vapor by a spark, and ignition by an arc where the arc produces the combustible vapor and the ignition source
Preparation of heterocyclic block copolymer from perfluoroalkylene oxide alpha, omega-diamidoximes
Diamidoxime monomers are intermolecularly and thermally condensed to form a heat and chemical resistant polymer containing 1,2,4-oxadiazole linkages with identical bivalent organic radicals or any combination of bivalent organic radicals selected from the group consisting of -(CX(sub 2))p-, wherein P ranges from 2 to 8 when X is fluorine and 2 to 18 when X is hydrogen, chlorine, nitro or aryl; arylene; and an oligometric or polymeric radical prepared by reacting a dicarboxylic acid halide with a fluorinated epoxide and having the formula: (CFY(OCF(sub 2)CFY)sub m)O(CX(sub 2))(sub p)O(CFYCF(sub 2)O)(sub n)CFY wherein Y is flourine or tryifluoromethyl, X is nitro, aryl, hydrogen, chlorine or fluorine, preferably the latter, p ranges from 1 to 18 and m+n ranges from 2 to 7
Design of a Multi-Moon Orbiter
The Multi-Moon Orbiter concept is introduced, wherein a single spacecraft orbits
several moons of Jupiter, allowing long duration observations. The ΔV requirements
for this mission can be low if ballistic captures and resonant gravity assists by Jupiter’s
moons are used. For example, using only 22 m/s, a spacecraft initially injected in a
jovian orbit can be directed into a capture orbit around Europa, orbiting both Callisto
and Ganymede enroute. The time of flight for this preliminary trajectory is four years,
but may be reduced by striking a compromise between fuel and time optimization during
the inter-moon transfer phases
Application of dynamical systems theory to a very low energy transfer
We use lobe dynamics in the restricted three-body problem to design orbits with
prescribed itineraries with respect to the resonance regions within a Hill’s region. The
application we envision is the design of a low energy trajectory to orbit three of Jupiter’s
moons using the patched three-body approximation (P3BA). We introduce the “switching
region,” the P3BA analogue to the “sphere of influence.” Numerical results are given
for the problem of finding the fastest trajectory from an initial region of phase space
(escape orbits from moon A) to a target region (orbits captured by moon B) using small
controls
Contact-Aided Invariant Extended Kalman Filtering for Legged Robot State Estimation
This paper derives a contact-aided inertial navigation observer for a 3D
bipedal robot using the theory of invariant observer design. Aided inertial
navigation is fundamentally a nonlinear observer design problem; thus, current
solutions are based on approximations of the system dynamics, such as an
Extended Kalman Filter (EKF), which uses a system's Jacobian linearization
along the current best estimate of its trajectory. On the basis of the theory
of invariant observer design by Barrau and Bonnabel, and in particular, the
Invariant EKF (InEKF), we show that the error dynamics of the point
contact-inertial system follows a log-linear autonomous differential equation;
hence, the observable state variables can be rendered convergent with a domain
of attraction that is independent of the system's trajectory. Due to the
log-linear form of the error dynamics, it is not necessary to perform a
nonlinear observability analysis to show that when using an Inertial
Measurement Unit (IMU) and contact sensors, the absolute position of the robot
and a rotation about the gravity vector (yaw) are unobservable. We further
augment the state of the developed InEKF with IMU biases, as the online
estimation of these parameters has a crucial impact on system performance. We
evaluate the convergence of the proposed system with the commonly used
quaternion-based EKF observer using a Monte-Carlo simulation. In addition, our
experimental evaluation using a Cassie-series bipedal robot shows that the
contact-aided InEKF provides better performance in comparison with the
quaternion-based EKF as a result of exploiting symmetries present in the system
dynamics.Comment: Published in the proceedings of Robotics: Science and Systems 201
Soluble Fermentable Dietary Fibre (Pectin) Decreases Caloric Intake, Adiposity and Lipidaemia in High-Fat Diet-Induced Obese Rats
Funding: This work was funded by the Scottish Government Rural and Environment Science and Analytical Services Division. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD
Assessing digital preservation frameworks: the approach of the SHAMAN project
How can we deliver infrastructure capable of supporting the
preservation of digital objects, as well as the services that can be applied to those digital objects, in ways that future unknown systems will understand? A critical problem in developing systems is the process of validating whether the delivered solution effectively reflects the validated requirements. This is a challenge also for the EU-funded SHAMAN project, which aims to develop an integrated preservation framework using grid-technologies for distributed networks of digital preservation systems, for managing the storage, access, presentation, and manipulation of digital objects over time. Recognising this, the project team ensured that alongside the user requirements an assessment framework was developed. This paper presents the assessment of the SHAMAN demonstrators for the memory institution, industrial design and engineering and eScience domains, from the point of view of
user’s needs and fitness for purpose. An innovative synergistic use of TRAC criteria, DRAMBORA risk registry and mitigation strategies, iRODS rules and information system models requirements has been designed, with the underlying goal to define associated policies, rules and state information, and make them wherever possible machine-encodable and enforceable. The described assessment framework can be valuable not only for the implementers of this project preservation framework, but for the wider digital preservation community, because it provides a
holistic approach to assessing and validating the preservation of digital libraries, digital repositories and data centres
Invariant Manifolds, the Spatial Three-Body Problem and Space Mission Design
The invariant manifold structures of the collinear libration points for the
spatial restricted three-body problem provide the framework for understanding
complex dynamical phenomena from a geometric point of view.
In particular, the stable and unstable invariant manifold \tubes" associated
to libration point orbits are the phase space structures that provide a
conduit for orbits between primary bodies for separate three-body systems.
These invariant manifold tubes can be used to construct new spacecraft
trajectories, such as a \Petit Grand Tour" of the moons of Jupiter. Previous
work focused on the planar circular restricted three-body problem.
The current work extends the results to the spatial case
- …