100 research outputs found

    Adverse Intrauterine Environment and Cardiac miRNA Expression.

    Get PDF
    Placental insufficiency, high altitude pregnancies, maternal obesity/diabetes, maternal undernutrition and stress can result in a poor setting for growth of the developing fetus. These adverse intrauterine environments result in physiological changes to the developing heart that impact how the heart will function in postnatal life. The intrauterine environment plays a key role in the complex interplay between genes and the epigenetic mechanisms that regulate their expression. In this review we describe how an adverse intrauterine environment can influence the expression of miRNAs (a sub-set of non-coding RNAs) and how these changes may impact heart development. Potential consequences of altered miRNA expression in the fetal heart include; Hypoxia inducible factor (HIF) activation, dysregulation of angiogenesis, mitochondrial abnormalities and altered glucose and fatty acid transport/metabolism. It is important to understand how miRNAs are altered in these adverse environments to identify key pathways that can be targeted using miRNA mimics or inhibitors to condition an improved developmental response

    Recent developments on the role of epigenetics in obesity and metabolic disease

    Get PDF
    The increased prevalence of obesity and related comorbidities is a major public health problem. While genetic factors undoubtedly play a role in determining individual susceptibility to weight gain and obesity, the identified genetic variants only explain part of the variation. This has led to growing interest in understanding the potential role of epigenetics as a mediator of gene-environment interactions underlying the development of obesity and its associated comorbidities. Initial evidence in support of a role of epigenetics in obesity and type 2 diabetes mellitus (T2DM) was mainly provided by animal studies, which reported epigenetic changes in key metabolically important tissues following high-fat feeding and epigenetic differences between lean and obese animals and by human studies which showed epigenetic changes in obesity and T2DM candidate genes in obese/diabetic individuals. More recently, advances in epigenetic methodologies and the reduced cost of epigenome-wide association studies (EWAS) have led to a rapid expansion of studies in human populations. These studies have also reported epigenetic differences between obese/T2DM adults and healthy controls and epigenetic changes in association with nutritional, weight loss, and exercise interventions. There is also increasing evidence from both human and animal studies that the relationship between perinatal nutritional exposures and later risk of obesity and T2DM may be mediated by epigenetic changes in the offspring. The aim of this review is to summarize the most recent developments in this rapidly moving field, with a particular focus on human EWAS and studies investigating the impact of nutritional and lifestyle factors (both pre- and postnatal) on the epigenome and their relationship to metabolic health outcomes. The difficulties in distinguishing consequence from causality in these studies and the critical role of animal models for testing causal relationships and providing insight into underlying mechanisms are also addressed. In summary, the area of epigenetics and metabolic health has seen rapid developments in a short space of time. While the outcomes to date are promising, studies are ongoing, and the next decade promises to be a time of productive research into the complex interactions between the genome, epigenome, and environment as they relate to metabolic disease.Susan J. van Dijk, Ross L. Tellam, Janna L. Morrison, Beverly S. Muhlhausler, and Peter L. Mollo

    The Imprinted Retrotransposon-Like Gene PEG11 (RTL1) Is Expressed as a Full-Length Protein in Skeletal Muscle from Callipyge Sheep

    Get PDF
    peer-reviewedMembers of the Ty3-Gypsy retrotransposon family are rare in mammalian genomes despite their abundance in invertebrates and some vertebrates. These elements contain a gag-pol-like structure characteristic of retroviruses but have lost their ability to retrotranspose into the mammalian genome and are thought to be inactive relics of ancient retrotransposition events. One of these retrotransposon-like elements, PEG11 (also called RTL1) is located at the distal end of ovine chromosome 18 within an imprinted gene cluster that is highly conserved in placental mammals. The region contains several conserved imprinted genes including BEGAIN, DLK1, DAT, GTL2 (MEG3), PEG11 (RTL1), PEG11as, MEG8, MIRG and DIO3. An intergenic point mutation between DLK1 and GTL2 causes muscle hypertrophy in callipyge sheep and is associated with large changes in expression of the genes linked in cis between DLK1 and MEG8. It has been suggested that over-expression of DLK1 is the effector of the callipyge phenotype; however, PEG11 gene expression is also strongly correlated with the emergence of the muscling phenotype as a function of genotype, muscle type and developmental stage. To date, there has been no direct evidence that PEG11 encodes a protein, especially as its anti-sense transcript (PEG11as) contains six miRNA that cause cleavage of the PEG11 transcript. Using immunological and mass spectrometry approaches we have directly identified the full-length PEG11 protein from postnatal nuclear preparations of callipyge skeletal muscle and conclude that its over-expression may be involved in inducing muscle hypertrophy. The developmental expression pattern of the PEG11 gene is consistent with the callipyge mutation causing recapitulation of the normal fetal-like gene expression program during postnatal development. Analysis of the PEG11 sequence indicates strong conservation of the regions encoding the antisense microRNA and in at least two cases these correspond with structural or functional domains of the protein suggesting co-evolution of the sense and antisense genes

    Identification of Genes Directly Responding to DLK1 Signaling in Callipyge Sheep

    Get PDF
    Background In food animal agriculture, there is a need to identify the mechanisms that can improve the efficiency of muscle growth and protein accretion. Callipyge sheep provide excellent machinery since the up-regulation of DLK1 and RTL1 results in extreme postnatal muscle hypertrophy in distinct muscles. The aim of this study is to distinguish the genes that directly respond to DLK1 and RTL1 signaling from the genes that change as the result of muscle specific effects. Results The quantitative PCR results indicated that DLK1 expression was significantly increased in hypertrophied muscles but not in non-hypertrophied muscles. However, RTL1 was up-regulated in both hypertrophied and non-hypertrophied muscles. Five genes, including PARK7, DNTTIP1, SLC22A3, METTL21E and PDE4D, were consistently co-expressed with DLK1, and therefore were possible transcriptional target genes responding to DLK1 signaling. Treatment of myoblast and myotubes with DLK1 protein induced an average of 1.6-fold and 1.4-fold increase in Dnttip1 and Pde4d expression respectively. Myh4 expression was significantly elevated in DLK1-treated myotubes, whereas the expression of Mettl21e was significantly increased in the DLK1-treated myoblasts but reduced in DLK1-treated myotubes. DLK1 treatment had no impact on Park7 expression. In addition, Park7 and Dnttip1 increased Myh4 and decreased Myh7 promoter activity, resemble to the effects of Dlk1. In contrast, expression of Mettl21e increased Myh7 and decreased Myh4 luciferase activity. Conclusion The study provided additional supports that RTL1 alone was insufficient to induce muscle hypertrophy and concluded that DLK1 was likely the primary effector of the hypertrophy phenotype. The results also suggested that DNTTIP1 and PDE4D were secondary effector genes responding to DLK1 signaling resulting in muscle fiber switch and muscular hypertrophy in callipyge lamb

    Regulation of microRNA during cardiomyocyte maturation in sheep.

    Get PDF
    BACKGROUND: There is a limited capacity to repair damage in the mammalian heart after birth, which is primarily due to the inability of cardiomyocytes to proliferate after birth. This is in contrast to zebrafish and salamander, in which cardiomyocytes retain the ability to proliferate throughout life and can regenerate their heart after significant damage. Recent studies in zebrafish and rodents implicate microRNA (miRNA) in the regulation of genes responsible for cardiac cell cycle progression and regeneration, in particular, miR-133a, the miR-15 family, miR-199a and miR-590. However, the significance of these miRNA and miRNA in general in the regulation of cardiomyocyte proliferation in large mammals, including humans, where the timing of heart development relative to birth is very different than in rodents, is unclear. To determine the involvement of miRNA in the down-regulation of cardiomyocyte proliferation occurring before birth in large mammals, we investigated miRNA and target gene expression in sheep hearts before and after birth. The experimental approach included targeted transcriptional profiling of miRNA and target mRNA previously identified in rodent studies as well as genome-wide miRNA profiling using microarrays. RESULTS: The cardiac expression of miR-133a increased and its target gene IGF1R decreased with increasing age, reaching their respective maximum and minimum abundance when the majority of ovine cardiomyocytes were quiescent. The expression of the miR-15 family members was variable with age, however, four of their target genes decreased with age. These latter profiles are inconsistent with the direct involvement of this family of miRNA in cardiomyocyte quiescence in late gestation sheep. The expression patterns of 'pro-proliferative' miR-199a and miR-590 were also inconsistent with their involvement in cardiomyocyte quiescence. Consequently, miRNA microarray analysis was undertaken, which identified six discrete clusters of miRNA with characteristic developmental profiles. The functions of predicted target genes for the miRNA in four of the six clusters were enriched for aspects of cell division and regulation of cell proliferation suggesting a potential role of these miRNA in regulating cardiomyocyte proliferation. CONCLUSION: The results of this study show that the expression of miR-133a and one of its target genes is consistent with it being involved in the suppression of cardiomyocyte proliferation, which occurs across the last third of gestation in sheep. The expression patterns of the miR-15 family, miR-199a and miR-590 were inconsistent with direct involvement in the regulation cardiomyocyte proliferation in sheep, despite studies in rodents demonstrating that their manipulation can influence the degree of cardiomyocyte proliferation. miRNA microarray analysis suggests a coordinated and potentially more complex role of multiple miRNA in the regulation of cardiomyocyte quiescence and highlights significant differences between species that may reflect their substantial differences in the timing of this developmental process

    An Always Correlated gene expression landscape for ovine skeletal muscle, lessons learnt from comparison with an β€œequivalent” bovine landscape

    Get PDF
    BACKGROUND: We have recently described a method for the construction of an informative gene expression correlation landscape for a single tissue, longissimus muscle (LM) of cattle, using a small number (less than a hundred) of diverse samples. Does this approach facilitate interspecies comparison of networks? FINDINGS: Using gene expression datasets from LM samples from a single postnatal time point for high and low muscling sheep, and from a developmental time course (prenatal to postnatal) for normal sheep and sheep exhibiting the Callipyge muscling phenotype gene expression correlations were calculated across subsets of the data comparable to the bovine analysis. An β€œAlways Correlated” gene expression landscape was constructed by integrating the correlations from the subsets of data and was compared to the equivalent landscape for bovine LM muscle. Whilst at the high level apparently equivalent modules were identified in the two species, at the detailed level overlap between genes in the equivalent modules was limited and generally not significant. Indeed, only 395 genes and 18 edges were in common between the two landscapes. CONCLUSIONS: Since it is unlikely that the equivalent muscles of two closely related species are as different as this analysis suggests, within tissue gene expression correlations appear to be very sensitive to the samples chosen for their construction, compounded by the different platforms used. Thus users need to be very cautious in interpretation of the differences. In future experiments, attention will be required to ensure equivalent experimental designs and use cross-species gene expression platform to enable the identification of true differences between different species

    A gene network switch enhances the oxidative capacity of ovine skeletal muscle during late fetal development

    Get PDF
    Background: The developmental transition between the late fetus and a newborn animal is associated with profound changes in skeletal muscle function as it adapts to the new physiological demands of locomotion and postural support against gravity. The mechanisms underpinning this adaption process are unclear but are likely to be initiated by changes in hormone levels. We tested the hypothesis that this developmental transition is associated with large coordinated changes in the transcription of skeletal muscle genes.Results: Using an ovine model, transcriptional profiling was performed on Longissimus dorsi skeletal muscle taken at three fetal developmental time points (80, 100 and 120 d of fetal development) and two postnatal time points, one approximately 3 days postpartum and a second at 3 months of age. The developmental time course was dominated by large changes in expression of 2,471 genes during the interval between late fetal development (120 d fetal development) and 1-3 days postpartum. Analysis of the functions of genes that were uniquely up-regulated in this interval showed strong enrichment for oxidative metabolism and the tricarboxylic acid cycle indicating enhanced mitochondrial activity. Histological examination of tissues from these developmental time points directly confirmed a marked increase in mitochondrial activity between the late fetal and early postnatal samples. The promoters of genes that were up-regulated during this fetal to neonatal transition were enriched for estrogen receptor 1 and estrogen related receptor alpha cis-regulatory motifs. The genes down-regulated during this interval highlighted de-emphasis of an array of functions including Wnt signaling, cell adhesion and differentiation. There were also changes in gene expression prior to this late fetal - postnatal transition and between the two postnatal time points. The former genes were enriched for functions involving the extracellular matrix and immune response while the latter principally involved functions associated with transcriptional regulation of metabolic processes.Conclusions: It is concluded that during late skeletal muscle development there are substantial and coordinated changes in the transcription of a large number of genes many of which are probably triggered by increased estrogen levels. These changes probably underpin the adaption of muscle to new physiological demands in the postnatal environment

    The Imprinted Retrotransposon-Like Gene PEG11 (RTL1) Is Expressed as a Full-Length Protein in Skeletal Muscle from Callipyge Sheep

    Get PDF
    Members of the Ty3-Gypsy retrotransposon family are rare in mammalian genomes despite their abundance in invertebrates and some vertebrates. These elements contain a gag-pol-like structure characteristic of retroviruses but have lost their ability to retrotranspose into the mammalian genome and are thought to be inactive relics of ancient retrotransposition events. One of these retrotransposon-like elements, PEG11 (also called RTL1) is located at the distal end of ovine chromosome 18 within an imprinted gene cluster that is highly conserved in placental mammals. The region contains several conserved imprinted genes including BEGAIN, DLK1, DAT, GTL2 (MEG3), PEG11 (RTL1), PEG11as, MEG8, MIRG and DIO3. An intergenic point mutation between DLK1 and GTL2 causes muscle hypertrophy in callipyge sheep and is associated with large changes in expression of the genes linked in cis between DLK1 and MEG8. It has been suggested that over-expression of DLK1 is the effector of the callipyge phenotype; however, PEG11 gene expression is also strongly correlated with the emergence of the muscling phenotype as a function of genotype, muscle type and developmental stage. To date, there has been no direct evidence that PEG11 encodes a protein, especially as its anti-sense transcript (PEG11as) contains six miRNA that cause cleavage of the PEG11 transcript. Using immunological and mass spectrometry approaches we have directly identified the full-length PEG11 protein from postnatal nuclear preparations of callipyge skeletal muscle and conclude that its over-expression may be involved in inducing muscle hypertrophy. The developmental expression pattern of the PEG11 gene is consistent with the callipyge mutation causing recapitulation of the normal fetal-like gene expression program during postnatal development. Analysis of the PEG11 sequence indicates strong conservation of the regions encoding the antisense microRNA and in at least two cases these correspond with structural or functional domains of the protein suggesting co-evolution of the sense and antisense genes

    Effect of DLK1 and RTL1 but Not MEG3 or MEG8 on Muscle Gene Expression in Callipyge Lambs

    Get PDF
    Callipyge sheep exhibit extreme postnatal muscle hypertrophy in the loin and hindquarters as a result of a single nucleotide polymorphism (SNP) in the imprinted DLK1-DIO3 domain on ovine chromosome 18. The callipyge SNP up-regulates the expression of surrounding transcripts when inherited in cis without altering their allele-specific imprinting status. The callipyge phenotype exhibits polar overdominant inheritance since only paternal heterozygous animals have muscle hypertrophy. Two studies were conducted profiling gene expression in lamb muscles to determine the down-stream effects of over-expression of paternal allele-specificDLK1 and RTL1 as well as maternal allele-specific MEG3, RTL1AS and MEG8, using Affymetrix bovine expression arrays. A total of 375 transcripts were differentially expressed in callipyge muscle and 25 transcripts were subsequently validated by quantitative PCR. The muscle-specific expression patterns of most genes were similar to DLK1 and included genes that are transcriptional repressors or affect feedback mechanisms in Ξ²-adrenergic and growth factor signaling pathways. One gene, phosphodiesterase 7A had an expression pattern similar to RTL1 expression indicating a biological activity for RTL1 in muscle. Only transcripts that localize to the DLK1-DIO3 domain were affected by inheritance of a maternal callipyge allele. Callipyge sheep are a unique model to study over expression of both paternal allele-specific genes and maternal allele-specific non-coding RNA with an accessible and nonlethal phenotype. This study has identified a number of genes that are regulated by DLK1 and RTL1expression and exert control on postnatal skeletal muscle growth. The genes identified in this model are primary candidates for naturally regulating postnatal muscle growth in all meat animal species, and may serve as targets to ameliorate muscle atrophy conditions including myopathic diseases and age-related sarcopenia

    Improving pregnancy outcomes in humans through studies in sheep

    Get PDF
    Experimental studies that are relevant to human pregnancy rely on the selection of appropriate animal models as an important element in experimental design. Consideration of the strengths and weaknesses of any animal model of human disease is fundamental to effective and meaningful translation of preclinical research. Studies in sheep have made significant contributions to our understanding of the normal and abnormal development of the fetus. As a model of human pregnancy, studies in sheep have enabled scientists and clinicians to answer questions about the etiology and treatment of poor maternal, placental, and fetal health and to provide an evidence base for translation of interventions to the clinic. The aim of this review is to highlight the advances in perinatal human medicine that have been achieved following translation of research using the pregnant sheep and fetus
    • …
    corecore