21,011 research outputs found

    Condensation, Partial Melting and Evaporation Processes Influence the Bulk Compositions of Spinel-Cored Spherules in the CO3.1 Chondrite Miller Range 90019

    Get PDF
    Here we focus on spinel-cored spherule calcium-aluminum rich inclusions (CAI), dominantly ~75-80 microns in diameter in the CO3.1 chondrite Miller Range 90019, which make up ~ 12 % of the fine-grained CAIs in one thin section. Their mineralogical content ranges from rare grossite- and hibonite-bearing varieties, through perovskite-melilitebearing, to fassaite-bearing and finally anorthitebearing. Non-spherical CAIs have been divided into 4 other groups, defined based on mineralogical abundances. We also characterized a group of AOAs from this sample. No glass has been recognized in any inclusions. Some relatively evolved members (anorthite-, spinel- + fassaite-bearing) among the spherules are found engulfed in AOAs. We characterized the bulk compositions of ~145 CAIs and AOAs in this meteorite, derived from EDS-x-ray mapping of the inclusions. We determined bulk compositions both with and without Wark-Lovering rims (when present), which are largely composed of diopside forsterite. The balance of the inclusions appear to have not been melted or partially melted, but rather they have textures that indicate they are condensates, often modified by extensive reaction with nebular gases. This presents the opportunity to examine effects on the bulk compositions of spherules resulting potentially from melting plus evaporation. Other aspects of this suite of refractory inclusions have been discussed in these abstracts. Oxygen isotope variations in one spherule were presented in [4]. The latter study showed a complex history of reaction with nebular gases possessing a variety of Oisotope compositions. Additional O isotopic studies of inclusions in this work are included in Mane et al

    An Optimal Control Theory for the Traveling Salesman Problem and Its Variants

    Get PDF
    We show that the traveling salesman problem (TSP) and its many variants may be modeled as functional optimization problems over a graph. In this formulation, all vertices and arcs of the graph are functionals; i.e., a mapping from a space of measurable functions to the field of real numbers. Many variants of the TSP, such as those with neighborhoods, with forbidden neighborhoods, with time-windows and with profits, can all be framed under this construct. In sharp contrast to their discrete-optimization counterparts, the modeling constructs presented in this paper represent a fundamentally new domain of analysis and computation for TSPs and their variants. Beyond its apparent mathematical unification of a class of problems in graph theory, the main advantage of the new approach is that it facilitates the modeling of certain application-specific problems in their home space of measurable functions. Consequently, certain elements of economic system theory such as dynamical models and continuous-time cost/profit functionals can be directly incorporated in the new optimization problem formulation. Furthermore, subtour elimination constraints, prevalent in discrete optimization formulations, are naturally enforced through continuity requirements. The price for the new modeling framework is nonsmooth functionals. Although a number of theoretical issues remain open in the proposed mathematical framework, we demonstrate the computational viability of the new modeling constructs over a sample set of problems to illustrate the rapid production of end-to-end TSP solutions to extensively-constrained practical problems.Comment: 24 pages, 8 figure

    Avoiding unseen obstacles : Subcortical vision is not sufficient to maintain normal obstacle avoidance behaviour during reaching

    Get PDF
    Acknowledgement This work was funded by the RS MacDonald Charitable Trust (awarded to C. Hesse in June 2013). T. Schenk was supported by a grant from the German Research Council (DFG – SCHE 735/3-1). The authors would like to thank Dr Stefanie Biehl for her valuable advice on lesion localisation based on the CT and MRI scans of the patients. We would also like to thank all the patients for taking part in our experiments and for giving up so much of their free time.Peer reviewedPostprin

    Oxygen Isotopic Imaging of Refractory Inclusions from the Miller Range (MIL) 090019 CO3 Chondrite: A Perovskite Perspective

    Get PDF
    Calcium-Aluminum-rich Inclusions (CAIs) in primitive meteorites are the first solids to condense in the Solar System. The oxygen isotopic compositions recorded in various mineral components of CAIs provide clues about their origins and post-formation histories, recording processes such as condensation, melting, nebular alteration, and fluidrock reactions on the parent body. MIL 090019 is similar to some rare carbonaceous chondrites such as Acfer 094, DOM 08004/6 and ALH 77303 that contain high abundances of a variety of refractory inclusions. This provides an opportunity to study the oxygen isotopic record of different types of refractory inclusions within the same meteorite. We analyzed CAIs specifically targeting primary minerals that are direct nebular condensates, such as corundum and perovskite, with the goal of gaining insights into the O isotopic composition of the nebular gas(es) from which these CAIs condensed. As MIL 090019 is a classified as CO3.1, it shows some signs of thermal metamorphism, compared to the more primitive CO3 meteorites (e.g., DOM 08004/06). A second goal of this study is to search for evidence of nebular processes in phases such as perovskite and melilite that are susceptible to parent body alteration to varying degrees. We analyzed the oxygen isotopic compositions of various CAIs from the MIL 090019 CO3 carbonaceous chondrite by ion imaging using the NanoSIMS 50L (Nano Secondary Ion Mass Spectrometer) at JSC following methods described in. An advantage of ion imaging over traditional spot analyses is that it provides spatial context to the oxygen isotopic data. This work builds on previously reported oxygen isotopic composition of two other CAIs (CAI-44 and CAI-E2) from the same meteorite thin section

    X-ray Reflection from Inhomogeneous Accretion Disks: II. Emission Line Variability and Implications for Reverberation Mapping

    Full text link
    One of the principal scientific objectives of the upcoming Constellation-X mission is to attempt to map the inner regions of accretion disks around black holes in Seyfert galaxies by reverberation mapping of the Fe K fluorescence line. This area of the disk is likely radiation pressure dominated and subject to various dynamical instabilities. Here, we show that density inhomogeneities in the disk atmosphere resulting from the photon bubble instability (PBI) can cause rapid changes in the X-ray reflection features, even when the illuminating flux is constant. Using a simulation of the development of the PBI, we find that, for the disk parameters chosen, the Fe K and O VIII Ly\alpha lines vary on timescales as short as a few hundredths of an orbital time. In response to the changes in accretion disk structure, the Fe K equivalent width (EW) shows variations as large as ~100 eV. The magnitude and direction (positive or negative) of the changes depends on the ionization state of the atmosphere. The largest changes are found when the disk is moderately ionized. The O VIII EW varies by tens of eV, as well as exhibiting plenty of rapid, low-amplitude changes. This effect provides a natural explanation for some observed instances of short timescale Fe K variability which was uncorrelated with the continuum (e.g., Mrk 841). New predictions for Fe K reverberation mapping should be made which include the effects of this accretion disk driven line variability and a variable ionization state. Reflection spectra averaged over the evolution of the instability are well fit by constant density models in the 2-10 keV region.Comment: 20 pages, 3 figures. Accepted by Ap

    Transform of Riccati equation of constant coefficients through fractional procedure

    Get PDF
    We use a particular fractional generalization of the ordinary differential equations that we apply to the Riccati equation of constant coefficients. By this means the latter is transformed into a modified Riccati equation with the free term expressed as a power of the independent variable which is of the same order as the order of the applied fractional derivative. We provide the solutions of the modified equation and employ the results for the case of the cosmological Riccati equation of FRW barotropic cosmologies that has been recently introduced by FaraoniComment: 7 pages, 2 figure

    Charge-Focusing Readout of Time Projection Chambers

    Full text link
    Time projection chambers (TPCs) have found a wide range of applications in particle physics, nuclear physics, and homeland security. For TPCs with high-resolution readout, the readout electronics often dominate the price of the final detector. We have developed a novel method which could be used to build large-scale detectors while limiting the necessary readout area. By focusing the drift charge with static electric fields, we would allow a small area of electronics to be sensitive to particle detection for a much larger detector volume. The resulting cost reduction could be important in areas of research which demand large-scale detectors, including dark matter searches and detection of special nuclear material. We present simulations made using the software package Garfield of a focusing structure to be used with a prototype TPC with pixel readout. This design should enable significant focusing while retaining directional sensitivity to incoming particles. We also present first experimental results and compare them with simulation.Comment: 5 pages, 17 figures, Presented at IEEE Nuclear Science Symposium 201
    corecore