282 research outputs found
Denying Leniency to Cartel Instigators: Costs and Benefits
A large number of countries have introduced successful leniency programs into their competition
law enforcement to encourage colluding firms to come forward with evidence that will help
detect cartels and punish price-fixers. This paper studies a feature of some of these programs
that has received relatively little attention in the literature: the inclusion of “No Immunity for
Instigators Clauses” (NIICs). These provisions deny leniency benefits to parties that instigate
cartel behavior or function as cartel ringleaders. Our results show that NIICs can lead to
increased or decreased levels of cartel conduct. By removing the instigator’s benefit from
cooperating with the authorities, a NIIC undoes some of the destabilizing benefit the leniency
program was intended to generate and thereby furthers cartel stability. On the other hand, the
instigator faces an asymmetrically severe punishment under a NIIC and this can reduce the
incentive to instigate in the first place
Cooler Target Development
This research was sponsored by the National Science Foundation Grant NSF PHY-931478
Limits on Production of Magnetic Monopoles Utilizing Samples from the DO and CDF Detectors at the Tevatron
We present 90% confidence level limits on magnetic monopole production at the
Fermilab Tevatron from three sets of samples obtained from the D0 and CDF
detectors each exposed to a proton-antiproton luminosity of
(experiment E-882). Limits are obtained for the production cross-sections and
masses for low-mass accelerator-produced pointlike Dirac monopoles trapped and
bound in material surrounding the D0 and CDF collision regions. In the absence
of a complete quantum field theory of magnetic charge, we estimate these limits
on the basis of a Drell-Yan model. These results (for magnetic charge values of
1, 2, 3, and 6 times the minimum Dirac charge) extend and improve previously
published bounds.Comment: 18 pages, 17 figures, REVTeX
Acute biphenotypic leukaemia: immunophenotypic and cytogenetic analysis
The incidence of acute biphenotypic leukaemia has ranged from less than 1% to almost 50% in various reports in the literature. This wide variability may be attributed to a number of reasons including lack of consistent diagnostic criteria, use of various panels of antibodies, and the failure to recognize the lack of lineage specificity of some of the antibodies used. The morphology, cytochemistry, immunophenotype and cytogenetics of acute biphenotypic leukaemias from our institution were studied. The diagnostic criteria took into consideration the morphology of the analysed cells, light scatter characteristics, and evaluation of antibody fluorescence histograms in determining whether the aberrant marker expression was arising from leukaemic blasts or differentiated bone marrow elements. Fifty-two of 746 cases (7%) fulfilled our criteria for acute biphenotypic leukaemias. These included 30 cases of acute lymphoblastic leukaemia (ALL) expressing myeloid antigens, 21 cases of acute myelogenous leukaemia (AML) expressing lymphoid markers, and one case of ALL expressing both B- and T-cell associated antigens. The acute biphenotypic leukaemia cases consisted of four major immunophenotypic subgroups: CD2± AML (11), CD19± AML (8), CD13 and/or CD33± ALL (24), CD11b± ALL (5) and others (4). Chromosomal analysis was carried out in 42/52 of the acute biphenotypic leukaemia cases; a clonal abnormality was found in 31 of these 42 cases. This study highlights the problems encountered in the diagnosis of acute biphenotypic leukaemia, some of which may be reponsible for the wide variation in the reported incidence of this leukaemia. We suggest that the use of strict, uniform diagnostic criteria may help in establishing a more consistent approach towards diagnosis of this leukaemic entity. We also suggest that biphenotypic leukaemia is comprised of biologically different groups of leukaemia based on immunophenotypic and cytogenetic findings.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73301/1/j.1365-2141.1993.tb03024.x.pd
Deriving the mass of particles from Extended Theories of Gravity in LHC era
We derive a geometrical approach to produce the mass of particles that could
be suitably tested at LHC. Starting from a 5D unification scheme, we show that
all the known interactions could be suitably deduced as an induced symmetry
breaking of the non-unitary GL(4)-group of diffeomorphisms. The deformations
inducing such a breaking act as vector bosons that, depending on the
gravitational mass states, can assume the role of interaction bosons like
gluons, electroweak bosons or photon. The further gravitational degrees of
freedom, emerging from the reduction mechanism in 4D, eliminate the hierarchy
problem since generate a cut-off comparable with electroweak one at TeV scales.
In this "economic" scheme, gravity should induce the other interactions in a
non-perturbative way.Comment: 30 pages, 1 figur
Adsorption of Cd, Cu, Ni and Zn in tropical soils under competitive and non-competitive systems
The adsorption of heavy metals in soils affects their behavior in the environment and their bioavailability to plants. The knowledge of the adsorption mechanisms in competitive systems allows a more realistic evaluation of the metals' behavior in the soil than the single metal adsorption. The objectives of this study were (i) to evaluate Cd, Cu, Ni, and Zn adsorption in 14 surface samples (0-0.2 m) of representative soils of the Brazilian humid-tropical region, in competitive and non-competitive systems, and (ii) to establish metal affinity sequences for each soil, based in the maximum adsorption capacity (MAC) estimated by the Langmuir model. The Rhodic Eutrudox, the Kandiudalf Eutrudox, the Arenic Hapludalf, the Arenic Hapludult and the Typic Argiudoll had the highest metals' adsorption capacity, whereas the Typic Quartzipsamment and the sandy-textured Arenic Hapludult had the lowest values. In general, the MAC values for metals were lower in the competitive than in the non-competitive system. In the non-competitive system, the most common affinity sequence was Cu > Zn > Ni > Cd, whereas the most common sequence was Cu > Cd > Zn > Ni in the competitive system. In general, the Langmuir model fitted well the adsorption data of metals on the studied soils.A adsorção de metais pesados em solos afeta seu comportamento e biodisponibilidade às plantas. O conhecimento dos mecanismos de adsorção em sistemas competitivos permite uma avaliação mais realista do comportamento dos metais no solo do que estudos com adsorção de cada metal, isoladamente. Os objetivos desse trabalho foram: (i) avaliar a adsorção de Cd, Cu, Ni e Zn em amostras superficiais (0-0,2 m) de 14 solos representativos da região tropical úmida, em sistema competitivo e não-competitivo, e (ii) estabelecer sequências de afinidade metálica para cada solo, com base nos valores de capacidade máxima de adsorção (CMA) dos metais estimados por meio do modelo de Langmuir. O Rhodic Eutrudox, o Kandiudalfic Eutrudox, o Arenic Hapludalf (Alf2), o Arenic Hapludult (Ult2) e o Typic Argiudoll apresentaram elevadas capacidades de adsorção dos metais, ocorrendo o inverso para o Typic Quartzipsamment e para o Arenic Hapludult textura arenosa. No geral, a CMA dos metais aos solos foi menor no sistema competitivo. A sequência de afinidade mais comumente encontrada no sistema não-competitivo foi Cu > Zn > Ni > Cd. No sistema competitivo, a sequência foi Cu > Cd > Zn > Ni. Em geral, o modelo de Langmuir simulou de maneira satisfatória a adsorção dos metais nas amostras de solo
Extreme magnification of an individual star at redshift 1.5 by a galaxy-cluster lens
Galaxy-cluster gravitational lenses can magnify background galaxies by a total factor of up to ~50. Here we report an image of an individual star at redshift z = 1.49 (dubbed MACS J1149 Lensed Star 1) magnified by more than ×2,000. A separate image, detected briefly 0.26″ from Lensed Star 1, is probably a counterimage of the first star demagnified for multiple years by an object of ≳3 solar masses in the cluster. For reasonable assumptions about the lensing system, microlensing fluctuations in the stars’ light curves can yield evidence about the mass function of intracluster stars and compact objects, including binary fractions and specific stellar evolution and supernova models. Dark-matter subhaloes or massive compact objects may help to account for the two images’ long-term brightness ratio
- …