4,967 research outputs found

    Timing matters: impact of anticonvulsant drug treatment and spikes on seizure risk in benign epilepsy with centrotemporal spikes

    Get PDF
    OBJECTIVE: Benign epilepsy with centrotemporal spikes (BECTS) is a common, self-limited epilepsy syndrome affecting school-age children. Classic interictal epileptiform discharges (IEDs) confirm diagnosis, and BECTS is presumed to be pharmacoresponsive. As seizure risk decreases in time with this disease, we hypothesize that the impact of IEDs and anticonvulsive drug (ACD) treatment on the risk of subsequent seizure will differ based on disease duration. METHODS: We calculate subsequent seizure risk following diagnosis in a large retrospective cohort of children with BECTS (n = 130), evaluating the impact of IEDs and ACD treatment in the first, second, third, and fourth years of disease. We use a Kaplan-Meier survival analysis and logistic regression models. Patients were censored if they were lost to follow-up or if they changed group status. RESULTS: Two-thirds of children had a subsequent seizure within 2 years of diagnosis. The majority of children had a subsequent seizure within 3 years despite treatment. The presence of IEDs on electroencephalography (EEG) did not impact subsequent seizure risk early in the disease. By the fourth year of disease, all children without IEDs remained seizure free, whereas one-third of children with IEDs at this stage had a subsequent seizure. Conversely, ACD treatment corresponded with lower risk of seizure early in the disease but did not impact seizure risk in later years. SIGNIFICANCE: In this cohort, the majority of children with BECTS had a subsequent seizure despite treatment. In addition, ACD treatment and IEDs predicted seizure risk at specific points of disease duration. Future prospective studies are needed to validate these exploratory findings.Published versio

    Cassin’s Sparrow in Dundy and Chase Counties, Nebraska

    Get PDF
    On 3 and 4 June 1989 Tanya Bray, Doug Rose, and I [W. Ross Silcock] traveled to Dundy Co. to look for two species: Chihuahuan Raven and Cassin\u27s Sparrow. While we found no Ravens, we did find several Cassin\u27s Sparrows. All of the Cassin\u27s Sparrows were found in sandy sage prairie habitat. At least six were found, in four different locations. The birds were located most easily by their skylarking behavior, although the song, once heard, is also useful for locating birds. Indeed, Doug Rose found the first Cassin\u27s Sparrow by song. Once located, we were able to study individuals carefully at distances of less than 100 feet. While the plumage is rather nondescript, a grayish brown overall, notable features are the relatively large size, flattish head, and long tail, the latter with distinctive white tail corners, best seen as the bird spreads its tail on landing. There are very few Nebraska records for Cassin\u27s Sparrow (Bray, Padelford, Silcock: The Birds of Nebraska, 1986), but it probably occurs more often, as it does not seem to be regularly searched for in its preferred habitat. There is extensive sage prairie in Dundy Co. The breeding range tends to change dramatically in response to climatic conditions, however, and it is possible that recent dry conditions have allowed Cassin\u27s Sparrow to expand its breeding range northward in recent years

    DESI Commissioning Instrument Metrology

    Get PDF
    The Dark Energy Spectroscopic Instrument (DESI) is under construction to measure the expansion history of the Universe using the Baryon Acoustic Oscillation technique. The spectra of 35 million galaxies and quasars over 14000 sq deg will be measured during the life of the experiment. A new prime focus corrector for the KPNO Mayall telescope will deliver light to 5000 fiber optic positioners. The fibers in turn feed ten broad-band spectrographs. We will describe the methods and results for the commissioning instrument metrology program. The primary goals of this program are to calculate the transformations and further develop the systems that will place fibers within 5um RMS of the target positions. We will use the commissioning instrument metrology program to measure the absolute three axis Cartesian coordinates of the five CCDs and 22 illuminated fiducials on the commissioning instrument

    A Pseudospectral Optimal Motion Planner for Autonomous Unmanned Vehicles

    Get PDF
    2010 American Control Conference, Marriott Waterfront, Baltimore, MD, USA, June 30-July 02, 2010This paper presents a pseudospectral (PS) optimal control algorithm for the autonomous motion planning of a fleet of unmanned ground vehicles (UGVs). The UGVs must traverse an obstacle-cluttered environment while maintaining robustness against possible collisions. The generality of the algorithm comes from a binary logic that modifies the cost function for various motion planning modes. Typical scenarios including path following and multi-vehicle pursuit are demonstrated. The proposed framework enables the availability of real-time information to be exploited by real-time reformulation of the optimal control problem combined with real-time computation. This allows the each vehicle to accommodate potential changes in the mission/environment and uncertain conditions. Experimental results are presented to substantiate the utility of the approach on a typical planning scenario

    Attenuation of neural responses in primary visual cortex during the attentional blink

    Get PDF
    Information-processing bottlenecks are characteristic of many cognitive and neural systems. One such bottleneck is revealed by tasks in which rapidly successive stimulus events must be reported. Here, observers missed the second of two visual targets if it occurred within 700 ms of the first [an "attentional blink" (AB)], even though this second target could be reported accurately when the first item was ignored. Isolating neural responses to such rapid events has proven difficult because current magnetic resonance imaging methods rely on relatively sluggish changes in the brain's physiological response to sensory inputs. Here, we overcame this limitation by presenting successive visual targets at different spatial locations, thereby exploiting the retinotopic organization of early cortical visual areas to distinguish neural activity associated with successive target events. We show that neural activity in primary visual cortex is significantly modulated during the AB, and that this activity mirrors behavioral measures of target identification accuracy. The findings suggest that the neural signature of perceptual suppression during processing of rapidly successive stimuli is evident at the earliest stages of cortical sensory processing

    Effect of H on the crystalline and magnetic structures of the YCo3-H(D) system. I. YCo3 from neutron powder diffraction and first-principles calculations

    Get PDF
    This paper reports investigations into the influence of hydrogen on the magnetic properties of the YCo3-H system. We report results on the magnetic structure and magnetic transitions of YCo3 using a combination of neutron powder diffraction measurements and first-principles full potential augmented plane wave + local orbital calculations under the generalized gradient approximation. The ferromagnetic and ferrimagnetic structures are examined on an equal footing. However, we identify that, no matter which structure is used as the starting point, the neutron diffraction data always refines down to the ferrimagnetic structure with the Co2 atoms having antiparallel spins. In the ab initio calculations, the inclusion of spin-orbit coupling is found to be important in the prediction of the correct magnetic ground state. Here, the results suggest that, for zero external field and sufficiently low temperatures, the spin arrangement of YCo3 is ferrimagnetic rather than ferromagnetic as previously believed. The fixed spin moment calculation technique has been employed to understand the two successive field-induced magnetic transitions observed in previous magnetization measurements under increasing ultrahigh magnetic fields. We find that the magnetic transitions start from the ferrimagnetic phase �0.61�B/Co� and terminate with the ferromagnetic phase �1.16�B/Co�, while the spin on the Co2 atoms progressively changes from antiparallel ferrimagnetic to paramagnetic and then to ferromagnetic. Our neutron diffraction measurements, ab initio calculations, and the high field magnetization measurements are thus entirely self-consistent
    • …
    corecore