104 research outputs found

    Empirical constraints on turbulence in proto-planetary discs

    Full text link
    Proto-planetary discs, the birth environment of planets, are an example of a structure commonly found in astrophysics, accretion discs. Identifying the mechanism responsible for accretion is a long-standing problem, dating back several decades. The common picture is that accretion is a consequence of turbulence, with several instabilities proposed for its origin. While traditionally this field used to be a purely theoretical endeavour, the landscape is now changing thanks mainly to new observational facilities such as the ALMA radio interferometer. Thanks to large improvements in spatial and spectral resolution and sensitivity (which have enabled the study of disc substructure, kinematics and surveys of large disc populations), multiple techniques have been devised to observationally measure the amount of turbulence in discs. This review summarises these techniques, ranging from attempts at direct detection of turbulence from line broadening, to more indirect approaches that rely on properties of the dust or consider the evolution of global disc properties (such as masses, radii and accretion rates) for large samples, and what their findings are. Multiple lines of evidence suggest that discs are in fact not as turbulent as thought one decade ago. On the other hand, direct detection of turbulence in some discs and the finite radial extent of dust substructures and in some cases the finite vertical extent strongly indicate that turbulence must be present at some level in proto-planetary discs. It is still an open question whether this amount of turbulence is enough to power accretion or if this is instead driven by other mechanisms, such as MHD winds.Comment: 24 pages, 7 figures. Accepted for publication on New Astronomy Review

    The long-term evolution of photoevaporating transition discs with giant planets

    Full text link
    Photo-evaporation and planet formation have both been proposed as mechanisms responsible for the creation of a transition disc. We have studied their combined effect through a suite of 2d simulations of protoplanetary discs undergoing X-ray photoevaporation with an embedded giant planet. In a previous work we explored how the formation of a giant planet triggers the dispersal of the inner disc by photo-evaporation at earlier times than what would have happened otherwise. This is particularly relevant for the observed transition discs with large holes and high mass accretion rates that cannot be explained by photo-evaporation alone. In this work we significantly expand the parameter space investigated by previous simulations. In addition, the updated model includes thermal sweeping, needed for studying the complete dispersal of the disc. After the removal of the inner disc the disc is a non accreting transition disc, an object that is rarely seen in observations. We assess the relative length of this phase, to understand if it is long lived enough to be found observationally. Depending on the parameters, especially on the X-ray luminosity of the star, we find that the fraction of time spent as a non-accretor greatly varies. We build a population synthesis model to compare with observations and find that in general thermal sweeping is not effective enough to destroy the outer disc, leaving many transition discs in a relatively long lived phase with a gas free hole, at odds with observations. We discuss the implications for transition disc evolution. In particular, we highlight the current lack of explanation for the missing non-accreting transition discs with large holes, which is a serious issue in the planet hypothesis.Comment: 11 pages, 5 figures; accepted by MNRA

    The interplay between X-ray photoevaporation and planet formation

    Full text link
    We assess the potential of planet formation instigating the early formation of a photoevaporation driven gap, up to radii larger than typical for photoevaporation alone. For our investigation we make use of hydrodynamics models of photoevaporating discs with a giant planet embedded. We find that, by reducing the mass accretion flow onto the star, discs that form giant planets will be dispersed at earlier times than discs without planets by X-ray photoevaporation. By clearing the portion of the disc inner of the planet orbital radius, planet formation induced photoevaporation (PIPE) is able to produce transition disc that for a given mass accretion rate have larger holes when compared to standard X-ray photoevaporation. This constitutes a possible route for the formation of the observed class of accreting transition discs with large holes, which are otherwise difficult to explain by planet formation or photoevaporation alone. Moreover, assuming that a planet is able to filter dust completely, PIPE produces a transition disc with a large hole and may provide a mechanism to quickly shut down accretion. This process appears to be too slow however to explain the observed desert in the population of transition disc with large holes and low mass accretion rates.Comment: 11 pages, 10 figures, accepted by MNRAS on 31/12/201

    Proto-planetary disc evolution and dispersal

    Get PDF

    The Bardeen-Petterson effect in accreting supermassive black-hole binaries: a systematic approach

    Get PDF
    Disc-driven migration is a key evolutionary stage of supermassive black-hole binaries hosted in gas-rich galaxies. Besides promoting the inspiral, viscous interactions tend to align the spins of the black holes with the orbital angular momentum of the disc. We present a critical and systematic investigation of this problem, also known as the Bardeen-Petterson effect. We design a new iterative scheme to solve the non-linear dynamics of warped accretion discs under the influence of both relativistic frame dragging and binary companion. We characterize the impact of the disc "critical obliquity", which marks regions of the parameter space where stationary solutions do not exist. We find that black-hole spins reach either complete alignment or a critical configuration. Reaching the critical obliquity might imply that the disc breaks as observed in hydrodynamical simulations. Our findings are important to predict the spin configurations with which supermassive black-hole binaries enter their gravitational-wave driven regime and become detectable by LISA.Comment: 17 pages, 14 figures. Published in MNRA
    • …
    corecore